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Simplified statement to warm up

Def – c–c curve in R2 A set A ⊂ R2 is a c–c curve if there exists φ1, φ2 : R → R two convex
functions such that

A = {(z, φ1(z)− φ2(z)) | z ∈ R} .

Theorem – Baby Zajíček A set A ⊂ R2 is contained in the union of countably many c–c
curves if and only if there exists J : R2 → R convex and not differentiable at any point of A.

If A is a c–c curve, one can take J(x1, x2) = max (φ1(x1), x2 + φ2(x1)), which is convex. The points
where both arguments are equal are the points of A, and by formulae for the subdifferential of maxima
of convex functions [Cla90, Theorem 2.8.2], ∂J contains all combinations of subdifs of φ1 (which is
contained in (R, 0)) and π2 + φ2 (contained in (R, 1)), so not differentiable at any point of A.
The general case is left to the reader and we only care about the converse implication.
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The proof of Baby Zajíček (1/3)

First observation: If a convex function J : R2 → R is not differentiable at x, then either J(x1, ·) or
J(·, x2) is not differentiable from R to R. (Take v ̸= w in the subdifferential, and assume v1 < w1.
Then both v1, w1 ∈ ∂J(·, x2).) Since we want a countable covering, it suffices to show that each set

A1 :=
{
x = (x1, x2) ∈ R2

∣∣ J(·, x2) is not differentiable at x1

}
,

A2 :=
{
x = (x1, x2) ∈ R2

∣∣ J(x1, ·) is not differentiable at x2

}
can be covered by countably many c–c curves.
Second observation: A convex function from R to R is not differentiable iff there exists r1 < r2 ∈ Q
in its subdifferential. So, splitting A1 in a countable union of sets

Ar1,r2
1 := {(x1, x2) ∈ A1 | ri ∈ ∂x1

J(·, x2) for i ∈ {1, 2}} ,

we may now reduce to the countable covering of each Ar1,r2
1 by c–c curves. We go on with A1.
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The proof of Baby Zajíček (2/3)

Core of the argument: Fix r1 < r2 ∈ Q. By construction, for any x = (x1, x2) ∈ Ar1,r2
1 , there exists

sxi ∈ R such that (ri, sxi ) ∈ ∂xJ. In consequence, for all y ∈ R2,

J(y) ⩾ J(x) + ⟨y − x, (ri, s
x
i )⟩ = J(x) + (y1 − x1)ri + (y2 − x2)s

x
i ,

J(y)− riy1 ⩾ J(x)− rix1 + (y2 − x2)s
x
i .

Let φi : R → R ∪ {∞} be defined by

φi(z) := sup
(x1,x2)∈B

ri
1

[J(x1, x2)− rix1] + (z − x2)s
x
i .

As a supremum of affine functions, φi is convex. We showed that J(y1, y2)− riy1 ⩾ φi(y2) for any
y ∈ R2. In the particular case where y ∈ Ar1,r2

1 , there holds J(y1, y2)− riy1 + (y2 − y2)s
y
i ⩽ φi(y2), so

that equality holds.
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The proof of Baby Zajíček (3/3)

We got to the equations J(x)− r1x1 = φ1(x2) and J(x)− r2x1 = φ2(x2) for any (x1, x2) ∈ Ar1,r2
1 ,

which implies by substitution that

(r2 − r1)x1 = φ1(x2)− φ2(x2), hence x1 =
φ1(x2)− φ2(x2)

r2 − r1
.

Third observation: In the above, the values of φi(x2) are finite for any (x1, x2) ∈ Ar1,r2
1 , but may be

infinite elsewhere. This can be avoided by splitting Ar1,r2
1 according to the norm of sxi , and getting

Lipschitz φj
i .
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Full statement

Def A set B is a c–c hypersurface of dimension k if, up to a permutation of coordinates,

B =
{
x = (x1, · · · , xd) ∈ Rd

∣∣∣ xj = φj
1(x1, · · · , xk)− φj

2(x1, · · · , xk) j ∈ Jk + 1, dK
}

for some convex functions φj
1, φ

j
2 : Rk → R.

Theorem – Zajíček [Zaj79] Let J : Rd → R be convex. For 1 ⩽ k < d, denote Ak :={
x ∈ Rd

∣∣ dim ∂xJ ⩾ d− k
}
. Then Ak can be covered by countably many c–c hypersurfaces of

dimension k. Conversely, if B ⊂ Rd is covered by countably many c–c hypersurfaces of dim d−k,
then B ⊂ Ak[J] for some convex J : Rd → R.

Proof by adaptation of Baby Zajíček’s one.
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A fun consequence

Corollary – Zajíček as well Let C ⊂ Rd be a compact set. Then, the set P of points x ∈ Rd

such that there exists more than one metric projection on B can be covered by countably many
c–c hypersurfaces of dimension n− 1.

Define
J(x) := |x|2 −min

c∈C
|x− c|2 = max

c∈C
2 ⟨c, x⟩ − |c2|.

Then J is convex and real-valued. If x has two metric projections, then two different c realize the
maximum, and one sees that J is not differentiable. Hence C ⊂ An−1[J], and the conclusion follows.
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A resounding consequence

Corollary – Gigli [Gig11] The transport-regular measures in P2(Rd) are exactly those which
give 0 mass to any c–c hypersurface of dimension n− 1.

Path:
• A transport plan is optimal iff [marginal conditions] + [condition on the support].
• The condition on the support exactly coincides with Rockafellar’s theorem describing which sets are

contained in the subdifferential of a convex function.
• If [included in the subdiff of a convex function] + [gives no mass to any set of nondiff of a convex

function], then must give full mass to a set where said convex function is differentiable.
• Differentiable =⇒ gradient =⇒ transport map!
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Thank you!
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