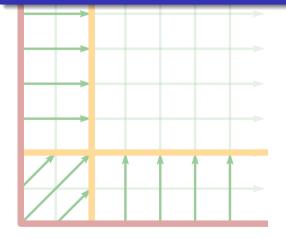
Who's who in \mathscr{P}_2

Towards a characterization of the geometric tangent cone to the Wasserstein space



Averil Aussedat PhD student LMI INSA Rouen *supervised by* Nicolas Forcadel & Hasnaa Zidani

May 19, 2025 GT OT-EDP-ML Orsay

	Measure fields 0000	Motivation	Results 000	Dimension one 000	Next O
Aim of the talk					

	Measure fields 0000	Motivation	Results	Dimension one	Next O
Aim of the talk					

• In \mathbb{R}^d : Fix x a point, and $v \in T_x \mathbb{R}^d$. Then $\lim_{h \searrow 0} \frac{d(x, x+hv)}{h} = |v|$.

	Measure fields 0000	Motivation	Results 000	Dimension one	Next O
Aim of the talk					

• In
$$\mathbb{R}^d$$
: Fix x a point, and $v \in T_x \mathbb{R}^d$. Then $\lim_{h \searrow 0} \frac{d(x,x+hv)}{h} = |v|$.

• For vector fields: Fix $\mu \in \mathscr{P}_2(\mathbb{R}^d)$, and $f \in L^2_\mu(\mathbb{R}^d; \mathbb{R}^d)$. If $f = \nabla \varphi$ for some $\varphi \in \mathcal{C}^\infty_c$, then

$$\lim_{h \searrow 0} \frac{d_{\mathcal{W}}\left(\mu, (id+hf)_{\#}\mu\right)}{h} = \|f\|_{L^{2}_{\mu}}.$$
(1)

Equality holds because $(id, id + hf)_{\#}\mu$ is optimal for small h.

.

	Measure fields 0000	Motivation	Results 000	Dimension one	Next O
Aim of the talk					

• In
$$\mathbb{R}^d$$
: Fix x a point, and $v \in T_x \mathbb{R}^d$. Then $\lim_{h \searrow 0} \frac{d(x, x+hv)}{h} = |v|$.

• For vector fields: Fix $\mu \in \mathscr{P}_2(\mathbb{R}^d)$, and $f \in L^2_\mu(\mathbb{R}^d; \mathbb{R}^d)$. If $f = \nabla \varphi$ for some $\varphi \in \mathcal{C}^\infty_c$, then

$$\lim_{h \searrow 0} \frac{d_{\mathcal{W}}\left(\mu, (id+hf)_{\#}\mu\right)}{h} = \|f\|_{L^{2}_{\mu}}.$$
(1)

Equality holds because $(id, id + hf)_{\#}\mu$ is optimal for small h.

• The vector fields *f* for which (1) holds are "almost optimal near 0". Very close to the metric definition of the tangent cone: equivalent?

Measure fields 0000	Motivation		Next O

Table of Contents

Tangent and solenoidal measure fields

Motivation

Results

The case of dimension one

Next

	Measure fields ●000	Motivation	Results 000	Dimension one	Next O
Vocabulary					

	Measure fields ●000	Motivation	Results 000	Dimension one	Next O
Vocabulary					

Def Given $\mu \in \mathscr{P}_2(\mathbb{R}^d)$, we denote $\mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$ the set of *measure fields* ξ such that $\pi_{x\#}\xi = \mu$.

Def Given $\mu \in \mathscr{P}_2(\mathbb{R}^d)$, we denote $\mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$ the set of *measure fields* ξ such that $\pi_{x\#}\xi = \mu$.

Two distances: the Wasserstein distance on the tangent bundle, denoted $d_{\mathcal{W}, T \mathbb{R}^d}(\cdot, \cdot)$, and

$$W^2_{\mu}(\xi,\zeta) \coloneqq \inf_{\alpha \in \Gamma_{\mu}(\xi,\zeta)} \int_{(x,v,w) \in \mathrm{T}^2 \mathbb{R}^d} |v-w|^2 \, d\alpha,$$

$$\Gamma_{\mu}(\xi,\zeta) \coloneqq \left\{ \alpha = \alpha(dx,dv,dw) \in \mathscr{P}_2(\mathrm{T}^2 \mathbb{R}^d) \mid (\pi_x,\pi_v)_{\#} \alpha = \xi, \ (\pi_x,\pi_w)_{\#} \alpha = \zeta \right\}.$$

Def Given $\mu \in \mathscr{P}_2(\mathbb{R}^d)$, we denote $\mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$ the set of *measure fields* ξ such that $\pi_{x\#}\xi = \mu$.

Two distances: the Wasserstein distance on the tangent bundle, denoted $d_{\mathcal{W}, T \mathbb{R}^d}(\cdot, \cdot)$, and

$$W^{2}_{\mu}(\xi,\zeta) \coloneqq \inf_{\alpha \in \Gamma_{\mu}(\xi,\zeta)} \int_{(x,v,w) \in \mathrm{T}^{2} \mathbb{R}^{d}} |v-w|^{2} d\alpha,$$

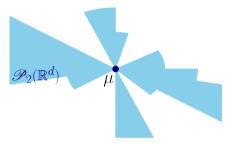
$$\Gamma_{\mu}(\xi,\zeta) \coloneqq \left\{ \alpha = \alpha(dx,dv,dw) \in \mathscr{P}_{2}(\mathrm{T}^{2} \mathbb{R}^{d}) \mid (\pi_{x},\pi_{v})_{\#} \alpha = \xi, \ (\pi_{x},\pi_{w})_{\#} \alpha = \zeta \right\}.$$

In particular, $W_{\mu}(f_{\#}\mu, g_{\#}\mu) = \|f - g\|_{L^2_{\mu}}$ for any $f, g \in L^2_{\mu}(\mathbb{R}^d; \mathbb{T} \mathbb{R}^d)$.

		Dimension one	

Fix $\mu \in \mathscr{P}_2(\mathbb{R}^d)$. For $\xi \in \mathscr{P}_2(\mathbb{T} \mathbb{R}^d)_{\mu}$, let

 $\exp_{\mu}(h \cdot \xi) \coloneqq (\pi_x + h\pi_v)_{\#} \xi \in \mathscr{P}_2(\mathbb{R}^d).$

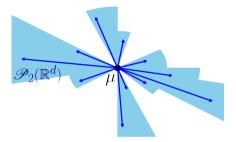


Measure fields 0●00		Dimension one	
			/

Fix $\mu \in \mathscr{P}_2(\mathbb{R}^d)$. For $\xi \in \mathscr{P}_2(\mathbb{T} \mathbb{R}^d)_{\mu}$, let

$$\exp_{\mu}(h \cdot \xi) \coloneqq (\pi_x + h\pi_v)_{\#} \xi \in \mathscr{P}_2(\mathbb{R}^d).$$

$$\left\{\xi \in \mathscr{P}_2(\mathrm{T}\,\mathbb{R}^d)_\mu \ \middle| \ s \mapsto \exp_\mu(s \cdot \xi) \text{ geodesic} \right\}$$

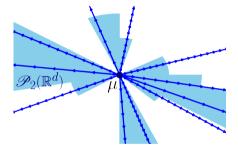


Measure fields ○●○○	Results 000	Dimension one	

Fix $\mu \in \mathscr{P}_2(\mathbb{R}^d)$. For $\xi \in \mathscr{P}_2(\mathbb{T} \mathbb{R}^d)_{\mu}$, let

$$\exp_{\mu}(h \cdot \xi) \coloneqq (\pi_x + h\pi_v)_{\#} \xi \in \mathscr{P}_2(\mathbb{R}^d).$$

$$\mathbb{R}^+ \cdot \left\{ \xi \in \mathscr{P}_2(\mathrm{T}\,\mathbb{R}^d)_\mu \ \Big| \ s \mapsto \exp_\mu(s \cdot \xi) \text{ geodesic} \right\}$$

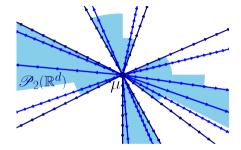


		Dimension one	Next O

Fix $\mu \in \mathscr{P}_2(\mathbb{R}^d)$. For $\xi \in \mathscr{P}_2(\mathbb{T} \mathbb{R}^d)_{\mu}$, let

$$\exp_{\mu}(h \cdot \xi) \coloneqq (\pi_x + h\pi_v)_{\#} \xi \in \mathscr{P}_2(\mathbb{R}^d).$$

$$\mathbb{R}^+ \cdot \left\{ \xi \in \mathscr{P}_2(\mathrm{T}\,\mathbb{R}^d)_\mu \mid s \mapsto \exp_\mu(s \cdot \xi) \text{ geodesic} \right\}^{W_\mu}.$$



		Dimension one	

Fix $\mu \in \mathscr{P}_2(\mathbb{R}^d)$. For $\xi \in \mathscr{P}_2(\mathbb{T} \mathbb{R}^d)_{\mu}$, let

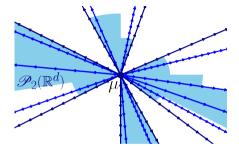
$$\exp_{\mu}(h \cdot \xi) \coloneqq (\pi_x + h\pi_v)_{\#} \xi \in \mathscr{P}_2(\mathbb{R}^d).$$

The set \mathbf{Tan}_{μ} is defined as

$$\mathbb{R}^+ \cdot \left\{ \xi \in \mathscr{P}_2(\mathrm{T}\,\mathbb{R}^d)_\mu \mid s \mapsto \exp_\mu(s \cdot \xi) \text{ geodesic} \right\}^{W_\mu}.$$

Examples:

• If $\mu = \delta_x$, then all measure fields are tangent (since they are all optimal).



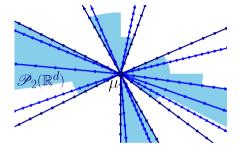
		Dimension one	

Fix $\mu \in \mathscr{P}_2(\mathbb{R}^d)$. For $\xi \in \mathscr{P}_2(\mathbb{T} \mathbb{R}^d)_{\mu}$, let

$$\exp_{\mu}(h \cdot \xi) \coloneqq (\pi_x + h\pi_v)_{\#} \xi \in \mathscr{P}_2(\mathbb{R}^d).$$

The set \mathbf{Tan}_{μ} is defined as

$$\mathbb{R}^+ \cdot \left\{ \xi \in \mathscr{P}_2(\mathbb{T} \mathbb{R}^d)_{\mu} \mid s \mapsto \exp_{\mu}(s \cdot \xi) \text{ geodesic} \right\}.^{W_{\mu}}$$



Examples:

- If $\mu = \delta_x$, then all measure fields are tangent (since they are all optimal).
- If $\mu \ll \mathcal{L}^d$, then $\operatorname{Tan}_{\mu} = \overline{\{(id, \nabla \varphi)_{\#}\mu \mid \varphi \in \mathcal{C}^{\infty}_c(\mathbb{R}^d; \mathbb{R})\}}^{W_{\mu}}$ (Brenier-McCann).

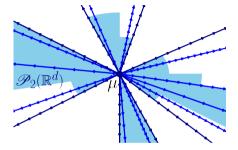
Measure fields ○●○○	Results 000	Dimension one	

Fix $\mu \in \mathscr{P}_2(\mathbb{R}^d)$. For $\xi \in \mathscr{P}_2(\mathbb{T} \mathbb{R}^d)_{\mu}$, let

$$\exp_{\mu}(h \cdot \xi) \coloneqq (\pi_x + h\pi_v)_{\#} \xi \in \mathscr{P}_2(\mathbb{R}^d).$$

The set \mathbf{Tan}_{μ} is defined as

$$\mathbb{R}^+ \cdot \left\{ \xi \in \mathscr{P}_2(\mathrm{T}\,\mathbb{R}^d)_\mu \ \big| \ s \mapsto \exp_\mu(s \cdot \xi) \text{ geodesic} \right\}.$$



Examples:

- If $\mu = \delta_x$, then all measure fields are tangent (since they are all optimal).
- If $\mu \ll \mathcal{L}^d$, then $\operatorname{Tan}_{\mu} = \overline{\{(id, \nabla \varphi)_{\#}\mu \mid \varphi \in \mathcal{C}^{\infty}_c(\mathbb{R}^d; \mathbb{R})\}}^{W_{\mu}}$ (Brenier-McCann).

[Gig08, Prop. 4.30] For $\xi \in \mathscr{P}_2(\mathbb{T} \mathbb{R}^d)_{\mu}$, there is a unique $\pi_T^{\mu} \xi$ minimizing $W_{\mu}(\xi, \cdot)$ over Tan_{μ} .

 $W_{\cdot \cdot}$

Measure fields	Motivation	Results	Dimension one	Next
0000				

Consider the following "metric" generalization of the L^2_μ scalar product:

$$\left\langle \xi, \zeta \right\rangle_{\mu} = \sup_{\alpha \in \Gamma_{\mu}(\xi, \zeta)} \int_{(x, v, w) \in \mathcal{T}^2 \mathbb{R}^d} \left\langle v, w \right\rangle d\alpha = \frac{1}{2} \left[\|\xi\|_{\mu}^2 + \|\zeta\|_{\mu}^2 - W_{\mu}^2(\xi, \zeta) \right].$$

Measure fields Mot	e fields Motivation Results Dimens	one Next
0000 00		

Consider the following "metric" generalization of the L^2_μ scalar product:

$$\left\langle \xi, \zeta \right\rangle_{\mu} = \sup_{\alpha \in \Gamma_{\mu}(\xi, \zeta)} \int_{(x, v, w) \in \mathbf{T}^2 \mathbb{R}^d} \left\langle v, w \right\rangle d\alpha = \frac{1}{2} \left[\|\xi\|_{\mu}^2 + \|\zeta\|_{\mu}^2 - W_{\mu}^2(\xi, \zeta) \right]$$

Def Denote \mathbf{Sol}_{μ} the set of $\zeta \in \mathscr{P}_2(\mathbb{T} \mathbb{R}^d)_{\mu}$ such that $\langle \zeta, \xi \rangle_{\mu} = 0$ for all $\xi \in \mathbf{Tan}_{\mu}$.

Measure fields	Motivation	Results	Dimension one	Next
0000				

Consider the following "metric" generalization of the L^2_μ scalar product:

$$\left\langle \xi, \zeta \right\rangle_{\mu} = \sup_{\alpha \in \Gamma_{\mu}(\xi, \zeta)} \int_{(x, v, w) \in \mathbf{T}^2 \mathbb{R}^d} \left\langle v, w \right\rangle d\alpha = \frac{1}{2} \left[\|\xi\|_{\mu}^2 + \|\zeta\|_{\mu}^2 - W_{\mu}^2(\xi, \zeta) \right].$$

Def Denote \mathbf{Sol}_{μ} the set of $\zeta \in \mathscr{P}_2(\mathbb{T} \mathbb{R}^d)_{\mu}$ such that $\langle \zeta, \xi \rangle_{\mu} = 0$ for all $\xi \in \mathbf{Tan}_{\mu}$.

Examples:

• If
$$\mu = \delta_x$$
, only the zero field $0_\mu = (id, 0)_{\#}\mu$.

Measure fields	Motivation	Results	Dimension one	Next
0000				

Consider the following "metric" generalization of the L^2_μ scalar product:

$$\langle \xi, \zeta \rangle_{\mu} = \sup_{\alpha \in \Gamma_{\mu}(\xi, \zeta)} \int_{(x, v, w) \in \mathcal{T}^2 \mathbb{R}^d} \langle v, w \rangle \, d\alpha = \frac{1}{2} \left[\|\xi\|_{\mu}^2 + \|\zeta\|_{\mu}^2 - W_{\mu}^2(\xi, \zeta) \right]$$

Def Denote \mathbf{Sol}_{μ} the set of $\zeta \in \mathscr{P}_2(\mathbb{T} \mathbb{R}^d)_{\mu}$ such that $\langle \zeta, \xi \rangle_{\mu} = 0$ for all $\xi \in \mathbf{Tan}_{\mu}$.

Examples:

• If
$$\mu = \delta_x$$
, only the zero field $0_\mu = (id, 0)_{\#}\mu$.

• If $\mu \ll \mathcal{L}^d$, then $\zeta \in \mathbf{Sol}_{\mu}$ iff $\langle \mathsf{Bary}_{\mathrm{T}\,\mathbb{R}^d} \left(\zeta \right), \nabla \varphi \rangle_{L^2_{\mu}} = 0$ for any $\varphi \in \mathcal{C}^{\infty}_c(\mathbb{R}^d; \mathbb{R})$.

Measure fields	Motivation	Results	Dimension one	Next
0000				

Consider the following "metric" generalization of the L^2_μ scalar product:

$$\langle \xi, \zeta \rangle_{\mu} = \sup_{\alpha \in \Gamma_{\mu}(\xi, \zeta)} \int_{(x, v, w) \in \mathcal{T}^2 \mathbb{R}^d} \langle v, w \rangle \, d\alpha = \frac{1}{2} \left[\|\xi\|_{\mu}^2 + \|\zeta\|_{\mu}^2 - W_{\mu}^2(\xi, \zeta) \right]$$

Def Denote \mathbf{Sol}_{μ} the set of $\zeta \in \mathscr{P}_2(\mathbb{T} \mathbb{R}^d)_{\mu}$ such that $\langle \zeta, \xi \rangle_{\mu} = 0$ for all $\xi \in \mathbf{Tan}_{\mu}$.

Examples:

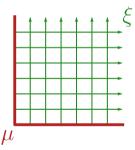
• If
$$\mu = \delta_x$$
, only the zero field $0_\mu = (id, 0)_{\#}\mu$.

• If $\mu \ll \mathcal{L}^d$, then $\zeta \in \mathbf{Sol}_{\mu}$ iff $\langle \mathsf{Bary}_{\mathrm{T}\,\mathbb{R}^d} (\zeta), \nabla \varphi \rangle_{L^2_{\mu}} = 0$ for any $\varphi \in \mathcal{C}^{\infty}_c(\mathbb{R}^d; \mathbb{R})$.

Proposition For any $\xi \in \mathscr{P}_2(\mathbb{T} \mathbb{R}^d)_{\mu}$, there is a unique $\pi_s^{\mu} \xi$ minimizing $W_{\mu}(\xi, \cdot)$ over \mathbf{Sol}_{μ} . Moreover, $\xi = (\pi_x, \pi_v + \pi_w)_{\#} \alpha$ for some (optimal) $\alpha \in \Gamma_{\mu}(\pi_T^{\mu} \xi, \pi_s^{\mu} \xi)$. (Helmholtz-Hodge!)

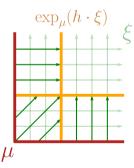
	Measure fields 000●	Results	Dimension one	Next O
Further examples				

Of the tangent cone



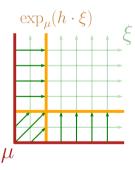
	Measure fields 000●	Motivation	Results 000	Dimension one	Next O

Of the tangent cone



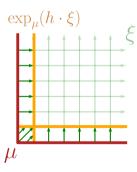
Measure fields 000●	Motivation	Results 000	Dimension one	Next O

Of the tangent cone



Measure fields 000●	Motivation	Results 000	Dimension one	Next O

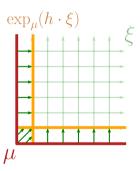
Of the tangent cone



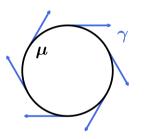
Measure fields ○○○●	Motivation	Results 000	Dimension one	Next O

Of the tangent cone

Closing rescaled geodesics with respect to W_{μ} allows to "cross immediately", if on small mass.



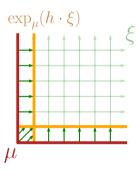
Of a solenoidal field For $\mu = \mathcal{H}^1 \llcorner \mathbb{S}^1$, $\gamma = (id, R)_{\#} \mu$:



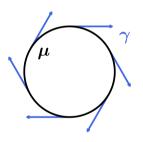
	Measure fields 000●	Motivation	Results 000	Dimension one	Next O

Of the tangent cone

Closing rescaled geodesics with respect to W_{μ} allows to "cross immediately", if on small mass.



Of a solenoidal field For $\mu = \mathcal{H}^1 \llcorner \mathbb{S}^1$, $\gamma = (id, R)_{\#} \mu$:

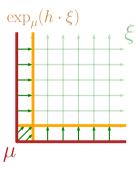


Idea: find sequences $(x_i)_{i=1}^N \subset \underset{R(x_i)}{\operatorname{supp}} \mu$ such that $R(x_i) \sim \frac{x_{i+1}-x_i}{h}.$

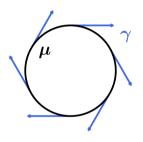
Measure fields 000●	Results 000	Next O

Of the tangent cone

Closing rescaled geodesics with respect to W_{μ} allows to "cross immediately", if on small mass.



Of a solenoidal field For $\mu = \mathcal{H}^1 \llcorner \mathbb{S}^1$, $\gamma = (id, R)_{\#} \mu$:



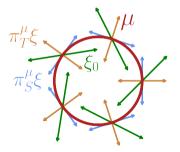
Idea: find sequences $(x_i)_{i=1}^N \subset \sup_{i=1}^{\mu} u$ such that $R(x_i) \sim \frac{x_{i+1}-x_i}{h}$.

Of projections

For $\mu = \mathcal{H}^1 \llcorner \mathbb{S}^1$, one can compute $\pi^{\mu}_T \xi$ and $\pi^{\mu}_S \xi$ for some ξ . One has

$$\xi \in \pi^{\mu}_{T} \xi \oplus \pi^{\mu}_{S} \xi,$$

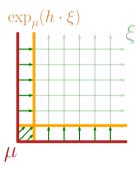
but $\pi^{\mu}_{T}\xi$, $\pi^{\mu}_{S}\xi$ do not determine ξ .



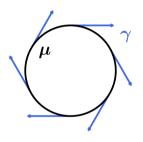
		Dimension one	Next O

Of the tangent cone

Closing rescaled geodesics with respect to W_{μ} allows to "cross immediately", if on small mass.



Of a solenoidal field For $\mu = \mathcal{H}^1 \llcorner \mathbb{S}^1$, $\gamma = (id, R)_{\#} \mu$:



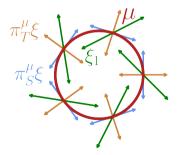
Idea: find sequences $(x_i)_{i=1}^N \subset \sup_{\substack{x_{i+1}-x_i \\ h}}$ such that

Of projections

For $\mu = \mathcal{H}^1 \llcorner \mathbb{S}^1$, one can compute $\pi^{\mu}_T \xi$ and $\pi^{\mu}_S \xi$ for some ξ . One has

$$\xi \in \pi^{\mu}_{T} \xi \oplus \pi^{\mu}_{S} \xi,$$

but $\pi^{\mu}_{T}\xi$, $\pi^{\mu}_{S}\xi$ do not determine ξ .



	Measure fields 0000	Motivation	Results 000	Dimension one	Next O
Table of Contents					

Tangent and solenoidal measure fields

Motivation

Results

The case of dimension one

Next

	Measure fields	Motivation ●○	Results	Dimension one	Next O
The original question					

Writing optimal control problems in $\mathscr{P}_2(\mathbb{R}^d)$, with ambition to link them to a "PDE".

The original question

Writing optimal control problems in $\mathscr{P}_2(\mathbb{R}^d)$, with ambition to link them to a "PDE".

On the Wasserstein side	On the metric side
Characteristics $(\mu_s)_s$ satisfying	Tangent cone defined from geodesics
$\partial_s \mu_s = -\operatorname{div}(f \cdot \mu_s)$, with $f \in \operatorname{Lip}(\mathbb{R}^d; \operatorname{T} \mathbb{R}^d)$	Directional derivatives

Writing optimal control problems in $\mathscr{P}_2(\mathbb{R}^d)$, with ambition to link them to a "PDE".

On the Wasserstein side	On the metric side
Characteristics $(\mu_s)_s$ satisfying	Tangent cone defined from geodesics
$\partial_s \mu_s = -\operatorname{div}(f\cdot\mu_s)$, with $f\in\operatorname{Lip}(\mathbb{R}^d;\operatorname{T}\mathbb{R}^d)$	Directional derivatives

How to take directional derivatives along $(\mu_s)_s$?

• Directly along $h \mapsto \exp_{\mu}(h \cdot f_{\#}\mu)$: not related to the tangent cone.

Writing optimal control problems in $\mathscr{P}_2(\mathbb{R}^d)$, with ambition to link them to a "PDE".

On the Wasserstein side	On the metric side
Characteristics $(\mu_s)_s$ satisfying	Tangent cone defined from geodesics
$\partial_s \mu_s = -\operatorname{div}(f\cdot\mu_s), ext{ with } f\in\operatorname{Lip}(\mathbb{R}^d;\operatorname{T}\mathbb{R}^d)$	Directional derivatives

How to take directional derivatives along $(\mu_s)_s$?

- Directly along $h \mapsto \exp_{\mu}(h \cdot f_{\#}\mu)$: not related to the tangent cone.
- Along the projection $h \mapsto \exp_{\mu}(h \cdot \pi^{\mu}_{T} f_{\#} \mu)$: less regular.

Writing optimal control problems in $\mathscr{P}_2(\mathbb{R}^d)$, with ambition to link them to a "PDE".

On the Wasserstein side	On the metric side
Characteristics $(\mu_s)_s$ satisfying	Tangent cone defined from geodesics
$\partial_s \mu_s = -\operatorname{div}(f\cdot\mu_s)$, with $f\in\operatorname{Lip}(\mathbb{R}^d;\operatorname{T}\mathbb{R}^d)$	Directional derivatives

How to take directional derivatives along $(\mu_s)_s$?

- Directly along $h \mapsto \exp_{\mu}(h \cdot f_{\#}\mu)$: not related to the tangent cone.
- Along the projection $h \mapsto \exp_{\mu}(h \cdot \pi^{\mu}_{T} f_{\#} \mu)$: less regular.

A way to win both: is it true that for all $\mu \in \mathscr{P}_2(\mathbb{R}^d)$, and $\xi \in \mathscr{P}_2(\mathbb{T} \mathbb{R}^d)_{\mu}$,

$$\lim_{h \searrow 0} \frac{d_{\mathcal{W}}(\exp_{\mu}(h \cdot \xi), \exp_{\mu}(h \cdot \pi_{T}^{\mu}\xi))}{h} = 0 \quad ?$$

 (\mathcal{Q})

	Measure fields 0000	Motivation ○●	Results	Dimension one	Next O
Some implications					

The question (Q) is whether
$$\lim_{h\searrow 0} \frac{d_{\mathcal{W}}(\exp_{\mu}(h\cdot\xi),\exp_{\mu}(h\cdot\pi_{T}^{\mu}\xi))}{h} = 0$$
 for all $\xi \in \mathscr{P}_{2}(T \mathbb{R}^{d})_{\mu}$.

	Measure fields 0000	Motivation ○●	Results 000	Dimension one	Next O
Some implications					

The question (Q) is whether
$$\lim_{h\searrow 0} \frac{d_{\mathcal{W}}(\exp_{\mu}(h\cdot\xi), \exp_{\mu}(h\cdot\pi_T^{\mu}\xi))}{h} = 0$$
 for all $\xi \in \mathscr{P}_2(\mathbb{T} \mathbb{R}^d)_{\mu}$.

On solenoidal fields If $\zeta \in \mathbf{Sol}_{\mu}$, then $\pi_T^{\mu} \zeta = 0_{\mu}$.

	Measure fields 0000	Motivation ○●	Results 000	Dimension one	Next O
Some implications					

The question (Q) is whether
$$\lim_{h\searrow 0} \frac{d_{\mathcal{W}}(\exp_{\mu}(h\cdot\xi), \exp_{\mu}(h\cdot\pi_{T}^{\mu}\xi))}{h} = 0$$
 for all $\xi \in \mathscr{P}_{2}(\mathbb{T} \mathbb{R}^{d})_{\mu}$.

On solenoidal fields If $\zeta \in \mathbf{Sol}_{\mu}$, then $\pi_T^{\mu} \zeta = 0_{\mu}$.

One implication If $\lim_{h\searrow 0} \frac{d_{\mathcal{W}}(\mu, \exp_{\mu}(h \cdot \zeta))}{h} = 0,$ then $\zeta \in \mathbf{Sol}_{\mu}$.

	Measure fields 0000	Results	Dimension one	Next O
Some implications				

The question (Q) is whether
$$\lim_{h\searrow 0} \frac{d_{\mathcal{W}}(\exp_{\mu}(h\cdot\xi), \exp_{\mu}(h\cdot\pi_{T}^{\mu}\xi))}{h} = 0$$
 for all $\xi \in \mathscr{P}_{2}(\mathbb{T} \mathbb{R}^{d})_{\mu}$.

On solenoidal fields If $\zeta \in \mathbf{Sol}_{\mu}$, then $\pi_T^{\mu}\zeta = 0_{\mu}$.

One implication If $\lim_{h\searrow 0}\frac{d_{\mathcal{W}}(\mu,\exp_{\mu}(h\cdot\zeta))}{h}=0,$ then $\zeta\in\mathbf{Sol}_{\mu}.$

On tangent fields

Intuitively, if \mathbf{Sol}_{μ} are losing time around h = 0, then "not losing time around 0" should mean "no \mathbf{Sol}_{μ} part in the HH decomposition".

The question (Q) is whether
$$\lim_{h\searrow 0} \frac{d_{\mathcal{W}}(\exp_{\mu}(h\cdot\xi), \exp_{\mu}(h\cdot\pi_{T}^{\mu}\xi))}{h} = 0$$
 for all $\xi \in \mathscr{P}_{2}(\mathbb{T} \mathbb{R}^{d})_{\mu}$.

On solenoidal fields If $\zeta \in \mathbf{Sol}_{\mu}$, then $\pi_T^{\mu}\zeta = 0_{\mu}$.

One implication If

$$\lim_{h\searrow 0}\frac{d_{\mathcal{W}}(\mu,\exp_{\mu}(h\cdot\zeta))}{h}=0,$$
 then $\zeta\in\mathbf{Sol}_{\mu}.$

On tangent fields

Intuitively, if \mathbf{Sol}_{μ} are losing time around h = 0, then "not losing time around 0" should mean "no \mathbf{Sol}_{μ} part in the HH decomposition".

One implication If $\xi \in \operatorname{Tan}_{\mu}$, then $\lim_{h \searrow 0} \frac{d_{\mathcal{W}}(\mu, \exp_{\mu}(h \cdot \xi))}{h} = \|\xi\|_{\mu}.$

	Measure fields 0000	Motivation	Results 000	Dimension one	Next O
Table of Contents					

Tangent and solenoidal measure fields

Motivation

Results

The case of dimension one

Next

Me	leasure fields	Motivation	Results	Dimension one	Next
			000		

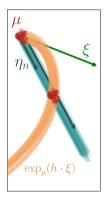
$$d_{\mathcal{W},\mathrm{T}\,\mathbb{R}^d}$$
-topology

Theorem – Approximation in $d_{\mathcal{W}, T \mathbb{R}^d}$ Let $\xi \in \mathscr{P}_2(T \mathbb{R}^d)_{\mu}$. If

$$\lim_{h\searrow 0}\frac{d_{\mathcal{W}}(\mu, \exp_{\mu}(h\cdot\xi))}{h} = \|\xi\|_{\mu},\tag{2}$$

then there exists a sequence $(h_n)_{n\in\mathbb{N}}\searrow 0$ such that for all choices of optimal plans $\eta_n\in\Gamma_o(\mu,\exp_\mu(h_n\cdot\xi))$,

$$\lim_{n \to \infty} d_{\mathcal{W}, \mathrm{T}\,\mathbb{R}^d} \left(\xi, \left(\pi_x, \frac{\pi_y - \pi_x}{h_n} \right)_{\#} \eta_n \right) = 0.$$
(3)



м

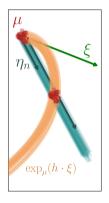
$$d_{\mathcal{W},\mathrm{T}\,\mathbb{R}^d}$$
-topology

Theorem – Approximation in $d_{\mathcal{W}, T \mathbb{R}^d}$ Let $\xi \in \mathscr{P}_2(T \mathbb{R}^d)_{\mu}$. If

$$\lim_{h \searrow 0} \frac{d_{\mathcal{W}}(\mu, \exp_{\mu}(h \cdot \xi))}{h} = \|\xi\|_{\mu}, \tag{2}$$

then there exists a sequence $(h_n)_{n\in\mathbb{N}}\searrow 0$ such that for all choices of optimal plans $\eta_n\in\Gamma_o(\mu,\exp_\mu(h_n\cdot\xi))$,

$$\lim_{n \to \infty} d_{\mathcal{W}, \mathrm{T}\,\mathbb{R}^d} \left(\xi, \left(\pi_x, \frac{\pi_y - \pi_x}{h_n} \right)_{\#} \eta_n \right) = 0.$$
(3)



If we can replace $d_{\mathcal{W}, T \mathbb{R}^d}$ by W_μ in (3), we get that $\xi \in \mathbf{Tan}_\mu$ by definition.

Roughly, (2) forces the velocity of $h \mapsto \exp_{\mu}(h \cdot \xi)$ to "align" with optimal plans, enough to get (3).

		Measure fields 0000	Motivation	Results 0●0	Dimension one 000	Next O
Maps						
Corollary -	- Map-induced fields Let $\gamma=f_{\#}\mu$	ι for some $f\in L^2_\mu(\Omega)$	$\mathbb{R}^d; \mathrm{T}\mathbb{R}^d)$			
lf	$\lim_{h\searrow 0}\frac{d_{\mathcal{W}}(\mu,\exp_{\mu}(h\cdot\gamma))}{h}=\ \gamma\ _{\mu},$	then		$\gamma \in$	\mathbf{Tan}_{μ} .	

	Measure fields 0000	Motivation	Results 0●0	Dimension one	Next O
Maps					
Corollary – Map-induced fields Let $\gamma = f_{\#}\mu$ for som	me $f\in L^2_\mu(\mathbb{I})$	$\mathbb{R}^d; \mathrm{T}\mathbb{R}^d).$			
If $\lim_{h\searrow 0}rac{d_{\mathcal W}(\mu,\exp_\mu(h\cdot\gamma))}{h}=\ \gamma\ _\mu,$ the	en		$\gamma \in$	\mathbf{Tan}_{μ} .	

then
$$\lim_{h\searrow 0} \frac{d_{\mathcal{W}}(\mu, \exp_{\mu}(h\cdot\gamma))}{h} = 0.$$

If $\gamma \in \mathbf{Sol}_{\mu}$,

	Measure fields 0000	Motivation	Results 0●0	Dimension one	Next O
Maps					

 $\begin{array}{ll} \textbf{Corollary} - \textbf{Map-induced fields} & \text{Let } \gamma = f_{\#}\mu \text{ for some } f \in L^2_{\mu}(\mathbb{R}^d; \mathbb{T} \mathbb{R}^d). \\ \\ \textbf{If} & \lim_{h\searrow 0} \frac{d_{\mathcal{W}}(\mu, \exp_{\mu}(h \cdot \gamma))}{h} = \|\gamma\|_{\mu}, \quad \textbf{then} & \gamma \in \textbf{Tan}_{\mu}. \\ \\ \textbf{If} & \gamma \in \textbf{Sol}_{\mu}, & \textbf{then} & \lim_{h\searrow 0} \frac{d_{\mathcal{W}}(\mu, \exp_{\mu}(h \cdot \gamma))}{h} = 0. \\ \\ \textbf{Moreover, for such } \gamma, \textbf{ there holds } d_{\mathcal{W}}(\exp_{\mu}(h \cdot \gamma), \exp_{\mu}(h \cdot \pi_T^{\mu}\gamma)) = o(h). \end{array}$

	Measure fields 0000	Motivation	Results 0●0	Dimension one	Next O
Maps					

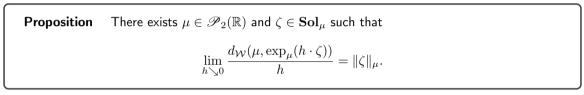
Corollary – Map-induced fields Let $\gamma = f_{\#}\mu$ for some $f \in L^2_{\mu}(\mathbb{R}^d; \mathbb{T} \mathbb{R}^d)$. If $\lim_{h \searrow 0} \frac{d_{\mathcal{W}}(\mu, \exp_{\mu}(h \cdot \gamma))}{h} = \|\gamma\|_{\mu}$, then $\gamma \in \mathbf{Tan}_{\mu}$. If $\gamma \in \mathbf{Sol}_{\mu}$, then $\lim_{h \searrow 0} \frac{d_{\mathcal{W}}(\mu, \exp_{\mu}(h \cdot \gamma))}{h} = 0$. Moreover, for such γ , there holds $d_{\mathcal{W}}(\exp_{\mu}(h \cdot \gamma), \exp_{\mu}(h \cdot \pi_T^{\mu}\gamma)) = o(h)$.

Argument: from the previous result, and the fact that the limit is induced by a map, one improves the convergence from $d_{W,T\mathbb{R}^d}$ to W_{μ} .

Measure fields 0000	Results 00●	Next O

$$\label{eq:proposition} \begin{aligned} \hline \mathbf{Proposition} \quad \text{There exists } \mu \in \mathscr{P}_2(\mathbb{R}) \text{ and } \zeta \in \mathbf{Sol}_\mu \text{ such that} \\ & \lim_{h\searrow 0} \frac{d_\mathcal{W}(\mu, \exp_\mu(h\cdot\zeta))}{h} = \|\zeta\|_\mu. \end{aligned}$$

Measure fields 0000	Results 00●	Next O



Catastrophy!

Measure fields 0000	Results 00●	Dimension one	Next O

Proposition	There exists $\mu\in \mathscr{P}_2(\mathbb{R})$ and $\zeta\in \mathbf{Sol}_\mu$ such that
	$d_{\mathcal{W}}(\mu, \exp_{\mu}(h \cdot \zeta))$

1

$$\lim_{h\searrow 0}\frac{a_{\mathcal{W}}(\mu,\exp_{\mu}(h\cdot\zeta))}{h} = \|\zeta\|_{\mu}.$$

Catastrophy!

• The previous results (on maps) save us for the application to control problems.

Measure fields	Results 00●	Dimension one	Next O

Proposition There exists $\mu \in \mathscr{P}_2(\mathbb{R})$ and $\zeta \in \mathbf{Sol}_{\mu}$ such that

$$\lim_{h \searrow 0} \frac{d_{\mathcal{W}}(\mu, \exp_{\mu}(h \cdot \zeta))}{h} = \|\zeta\|_{\mu}.$$

Catastrophy!

- The previous results (on maps) save us for the application to control problems.
- To understand, let us detail dimension one.

	Measure fields 0000	Motivation	Results 000	Dimension one	Next O
Table of Contents					

Tangent and solenoidal measure fields

Motivation

Results

The case of dimension one

Next

$\underbrace{\text{Measure fields}}_{\text{OOOO}} \text{Measure fields} \underbrace{\text{Motivation}}_{\text{OO}} \underbrace{\text{Results}}_{\text{OOO}} \underbrace{\text{Dimension one}}_{\text{OOO}} \underbrace{\text{Next}}_{\text{OOO}} \underbrace{\text{Next}}_{\text{OOO}} \underbrace{\text{Dimension one}}_{\text{OOO}} \underbrace{\text{Dimension one}}_{\text{OOO}} \underbrace{\text{Next}}_{\text{OOO}} \underbrace{\text{Dimension one}}_{\text{OOO}} \underbrace{\text{Dimension one}}_{\text{OOO}} \underbrace{\text{Next}}_{\text{OOO}} \underbrace{\text{Dimension one}}_{\text{OOO}} \underbrace{\text{Dimension one}}_{\text{OOO$

In dimension one, a measure μ can be written as $\mu = m_a \mu^a + m_d \mu^d$, with $\mu^a \in \mathscr{P}_2(\mathbb{R})$ purely atomic and $\mu^d \in \mathscr{P}_2(\mathbb{R})$ diffuse (atomless).

Formula for \mathbf{Tan}_{μ} and \mathbf{Sol}_{μ}

In dimension one, a measure μ can be written as $\mu = m_a \mu^a + m_d \mu^d$, with $\mu^a \in \mathscr{P}_2(\mathbb{R})$ purely atomic and $\mu^d \in \mathscr{P}_2(\mathbb{R})$ diffuse (atomless).

Measure fields

Motivation

Results

Dimension one

000

Next

Theorem One has

- $\xi \in \operatorname{Tan}_{\mu}$ if and only if $\xi = m_a \xi^a + m_d f_{\#}^d \mu^d$, with $\xi^a \in \mathscr{P}_2(\mathbb{T} \mathbb{R})_{\mu^a}$ and $f^d \in L^2_{\mu^d}(\mathbb{R}; \mathbb{T} \mathbb{R})$;
- $\zeta \in \mathbf{Sol}_{\mu}$ if and only if $\zeta = m_a 0_{\mu^a} + m_d \zeta^d$, with $\zeta^d \in \mathscr{P}_2(\mathbb{T}\mathbb{R})_{\mu^d}$ centred (barycenter 0).

Formula for \mathbf{Tan}_{μ} and \mathbf{Sol}_{μ}

In dimension one, a measure μ can be written as $\mu = m_a \mu^a + m_d \mu^d$, with $\mu^a \in \mathscr{P}_2(\mathbb{R})$ purely atomic and $\mu^d \in \mathscr{P}_2(\mathbb{R})$ diffuse (atomless).

Theorem One has

•
$$\xi \in \operatorname{Tan}_{\mu}$$
 if and only if $\xi = m_a \xi^a + m_d f_{\#}^d \mu^d$, with $\xi^a \in \mathscr{P}_2(\mathbb{T} \mathbb{R})_{\mu^a}$ and $f^d \in L^2_{\mu^d}(\mathbb{R}; \mathbb{T} \mathbb{R})$;

• $\zeta \in \operatorname{Sol}_{\mu}$ if and only if $\zeta = m_a 0_{\mu^a} + m_d \zeta^d$, with $\zeta^d \in \mathscr{P}_2(T \mathbb{R})_{\mu^d}$ centred (barycenter 0).

Arguments:

• on the diffuse part, Brenier-McCann-Gigli says optimal plans are maps, and $L^2_{\mu d}$ is closed for $W_{\mu d}$.

Motivation

Results

Dimension one

000

Next

Measure fields

Formula for Tan_{μ} and Sol_{μ}

In dimension one, a measure μ can be written as $\mu = m_a \mu^a + m_d \mu^d$, with $\mu^a \in \mathscr{P}_2(\mathbb{R})$ purely atomic and $\mu^d \in \mathscr{P}_2(\mathbb{R})$ diffuse (atomless).

Measure fields

Motivation

Results

Dimension one

000

Next

Theorem One has

•
$$\xi \in \operatorname{Tan}_{\mu}$$
 if and only if $\xi = m_a \xi^a + m_d f_{\#}^d \mu^d$, with $\xi^a \in \mathscr{P}_2(\mathbb{T} \mathbb{R})_{\mu^a}$ and $f^d \in L^2_{\mu^d}(\mathbb{R}; \mathbb{T} \mathbb{R})$;

•
$$\zeta \in \mathbf{Sol}_{\mu}$$
 if and only if $\zeta = m_a 0_{\mu^a} + m_d \zeta^d$, with $\zeta^d \in \mathscr{P}_2(\mathbb{T} \mathbb{R})_{\mu^d}$ centred (barycenter 0).

Arguments:

4

- on the diffuse part, Brenier-McCann-Gigli says optimal plans are maps, and $L^2_{\mu d}$ is closed for $W_{\mu d}$.
- On the atomic part, no condition. Merging both by approximation.

Formula for \mathbf{Tan}_{μ} and \mathbf{Sol}_{μ}

In dimension one, a measure μ can be written as $\mu = m_a \mu^a + m_d \mu^d$, with $\mu^a \in \mathscr{P}_2(\mathbb{R})$ purely atomic and $\mu^d \in \mathscr{P}_2(\mathbb{R})$ diffuse (atomless).

Measure fields

Motivation

Results

Dimension one

000

Next

Theorem One has

•
$$\xi \in \operatorname{Tan}_{\mu}$$
 if and only if $\xi = m_a \xi^a + m_d f_{\#}^d \mu^d$, with $\xi^a \in \mathscr{P}_2(\mathbb{T} \mathbb{R})_{\mu^a}$ and $f^d \in L^2_{\mu^d}(\mathbb{R}; \mathbb{T} \mathbb{R})$;

• $\zeta \in \operatorname{Sol}_{\mu}$ if and only if $\zeta = m_a 0_{\mu^a} + m_d \zeta^d$, with $\zeta^d \in \mathscr{P}_2(T \mathbb{R})_{\mu^d}$ centred (barycenter 0).

Arguments:

- on the diffuse part, Brenier-McCann-Gigli says optimal plans are maps, and $L^2_{\mu^d}$ is closed for W_{μ^d} .
- On the atomic part, no condition. Merging both by approximation.
- Structure of solenoidal measure fields by orthogonality.

	00	000	000	
Edge cases				

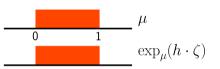
	Measure fields 0000	Motivation 00	Results 000	Dimension one ○●○	Next O
Edge cases					

If μ is absolutely continuous with respect to the Lebesgue measure, the equivalences hold as well.

	Measure fields 0000	Motivation 00	Results 000	Dimension one ○●○	Next O
Edge cases					

If μ is absolutely continuous with respect to the Lebesgue measure, the equivalences hold as well.

Argument Let $\mu = \mathcal{L}_{[0,1]}$ and $\zeta = \frac{1}{2}(id,-1)_{\#}\mu + \frac{1}{2}(id,1)_{\#}\mu$.

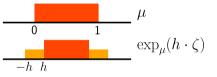


	Measure fields 0000	Motivation 00	Results 000	Dimension one ○●○	Next O
Edge cases					

If μ is absolutely continuous with respect to the Lebesgue measure, the equivalences hold as well.

Argument Let
$$\mu = \mathcal{L}_{[0,1]}$$
 and $\zeta = rac{1}{2}(id,-1)_{\#}\mu + rac{1}{2}(id,1)_{\#}\mu.$

$$\exp_{\mu}(h \cdot \zeta) = \underbrace{\frac{1}{2}\mathcal{L}_{[-h,h]}}_{\text{moves } \leqslant h, \text{ mass } h} + \underbrace{\mathcal{L}_{[h,1-h]}}_{\text{does not move}} + \underbrace{\frac{1}{2}\mathcal{L}_{[1-h,1+h]}}_{\text{moves } \leqslant h, \text{ mass } h}$$



	Measure fields 0000	Motivation 00	Results 000	Dimension one ○●○	Next O
Edge cases					

If μ is absolutely continuous with respect to the Lebesgue measure, the equivalences hold as well.

Argument Let
$$\mu = \mathcal{L}_{[0,1]}$$
 and $\zeta = \frac{1}{2}(id, -1)_{\#}\mu + \frac{1}{2}(id, 1)_{\#}\mu$.

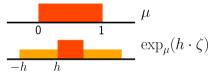
$$\exp_{\mu}(h \cdot \zeta) = \underbrace{\frac{1}{2}\mathcal{L}_{[-h,h]}}_{\text{moves } \leqslant h, \text{ mass } h} + \underbrace{\mathcal{L}_{[h,1-h]}}_{\text{does not move}} + \underbrace{\frac{1}{2}\mathcal{L}_{[1-h,1+h]}}_{\text{moves } \leqslant h, \text{ mass } h} = \underbrace{\frac{1}{2}\mathcal{L}_{[-h,h]}}_{-h} + \underbrace{\frac{1}{2}\mathcal{L}_{[1-h,1+h]}}_{-h} + \underbrace{\frac{1}{2}\mathcal{L}_{[1-h,1+h]}$$

	Measure fields 0000	Motivation 00	Results	Dimension one ○●○	Next O
Edge cases					

If μ is absolutely continuous with respect to the Lebesgue measure, the equivalences hold as well.

Argument Let
$$\mu = \mathcal{L}_{[0,1]}$$
 and $\zeta = \frac{1}{2}(id,-1)_{\#}\mu + \frac{1}{2}(id,1)_{\#}\mu$.

$$\exp_{\mu}(h \cdot \zeta) = \underbrace{\frac{1}{2}\mathcal{L}_{[-h,h]}}_{\text{moves } \leqslant h, \text{ mass } h} + \underbrace{\mathcal{L}_{[h,1-h]}}_{\text{does not move}} + \underbrace{\frac{1}{2}\mathcal{L}_{[1-h,1+h]}}_{\text{moves } \leqslant h, \text{ mass } h}$$



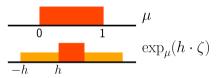
Hence $d_{\mathcal{W}}(\mu, \exp_{\mu}(h \cdot \zeta)) \leqslant \sqrt{2 \times h^2 \times h} = o(h)$. By approximation for $\mu \ll \mathcal{L}$ and ζ centred.

	Measure fields 0000	Motivation	Results	Dimension one ○●○	Next O
Edge cases					

If μ is absolutely continuous with respect to the Lebesgue measure, the equivalences hold as well.

Argument Let
$$\mu = \mathcal{L}_{[0,1]}$$
 and $\zeta = \frac{1}{2}(id,-1)_{\#}\mu + \frac{1}{2}(id,1)_{\#}\mu$.

$$\exp_{\mu}(h \cdot \zeta) = \underbrace{\frac{1}{2}\mathcal{L}_{[-h,h]}}_{\text{moves } \leqslant h, \text{ mass } h} + \underbrace{\mathcal{L}_{[h,1-h]}}_{\text{does not move}} + \underbrace{\frac{1}{2}\mathcal{L}_{[1-h,1+h]}}_{\text{moves } \leqslant h, \text{ mass } h}$$



Hence $d_{\mathcal{W}}(\mu, \exp_{\mu}(h \cdot \zeta)) \leqslant \sqrt{2 \times h^2 \times h} = o(h)$. By approximation for $\mu \ll \mathcal{L}$ and ζ centred.

For Tan_{μ} , write $\xi = (\pi_x + \pi_v + b(\pi_x))_{\#}\xi^0$ for ξ^0 centred,

 $d_{\mathcal{W}}(\mu, \exp_{\mu}(h \cdot \xi)) \leqslant d_{\mathcal{W}}(\mu, \exp_{\mu}(h \cdot \xi^{0})) + \|b\|_{\mu}.$

	Measure fields 0000	Motivation	Results 000	Dimension one ○●○	Next O
Edge cases					

If μ is absolutely continuous with respect to the Lebesgue measure, the equivalences hold as well.

Argument Let
$$\mu = \mathcal{L}_{[0,1]}$$
 and $\zeta = \frac{1}{2}(id,-1)_{\#}\mu + \frac{1}{2}(id,1)_{\#}\mu$.

$$\exp_{\mu}(h \cdot \zeta) = \underbrace{\frac{1}{2}\mathcal{L}_{[-h,h]}}_{\text{moves } \leqslant h, \text{ mass } h} + \underbrace{\mathcal{L}_{[h,1-h]}}_{\text{does not move}} + \underbrace{\frac{1}{2}\mathcal{L}_{[1-h,1+h]}}_{\text{moves } \leqslant h, \text{ mass } h}.$$

U

Hence $d_{\mathcal{W}}(\mu, \exp_{\mu}(h \cdot \zeta)) \leqslant \sqrt{2 \times h^2 \times h} = o(h)$. By approximation for $\mu \ll \mathcal{L}$ and ζ centred.

For
$$\mathbf{Tan}_{\mu}$$
, write $\xi = (\pi_x + \pi_v + b(\pi_x))_{\#}\xi^0$ for ξ^0 centred,

 $d_{\mathcal{W}}(\mu, \exp_{\mu}(h \cdot \xi)) \leqslant d_{\mathcal{W}}(\mu, \exp_{\mu}(h \cdot \xi^{0})) + \|b\|_{\mu}.$

	Measure fields 0000	Motivation	Results 000	Dimension one ○○●	Next O
A counterexample					

Let $F[\mu] \coloneqq \frac{1}{2}(id, -1)_{\#}\mu + \frac{1}{2}(id, 1)_{\#}\mu$. We want to construct $\mu \in \mathscr{P}_2(\mathbb{R})$ such that along $(h_n)_{n \in \mathbb{N}} \searrow 0$,

$$\frac{d_{\mathcal{W}}(\mu, \exp_{\mu}(h_n \cdot F[\mu]))}{h_n} \to_n 1 = \|F[\mu]\|_{\mu}.$$

Measure fields	Results 000	Dimension one ○○●	Next O

Let $F[\mu] \coloneqq \frac{1}{2}(id, -1)_{\#}\mu + \frac{1}{2}(id, 1)_{\#}\mu$. We want to construct $\mu \in \mathscr{P}_2(\mathbb{R})$ such that along $(h_n)_{n \in \mathbb{N}} \searrow 0$,

$$\frac{d_{\mathcal{W}}(\mu, \exp_{\mu}(h_n \cdot F[\mu]))}{h_n} \to_n 1 = \|F[\mu]\|_{\mu}.$$

For which measures does equality hold for $h_n > 0$?

$$\mu_{h_n}^{\mathsf{ex}} = \sum_i m_i \delta_{x_i}, \quad \text{with} \quad d(x_i, x_j) \geqslant 2h_n \quad \text{for } i \neq j.$$

Measure fields 0000	Motivation	Results 000	Dimension one ○○●	Next O

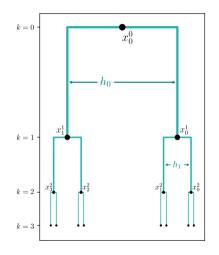
Let $F[\mu] \coloneqq \frac{1}{2}(id, -1)_{\#}\mu + \frac{1}{2}(id, 1)_{\#}\mu$. We want to construct $\mu \in \mathscr{P}_2(\mathbb{R})$ such that along $(h_n)_{n \in \mathbb{N}} \searrow 0$,

$$\frac{d_{\mathcal{W}}(\mu, \exp_{\mu}(h_n \cdot F[\mu]))}{h_n} \to_n 1 = \|F[\mu]\|_{\mu}.$$

For which measures does equality hold for $h_n > 0$?

$$\mu_{h_n}^{\mathsf{ex}} = \sum_i m_i \delta_{x_i}, \quad \text{with} \quad d(x_i, x_j) \ge 2h_n \quad \text{for } i \neq j.$$

• Find μ such that $d_{\mathcal{W}}(\mu, \mu_{h_n}^{ex}) = o(h_n)$: $d_{\mathcal{W}}$ -limit of a sequence of atomic measures, splitting each atom by small distances converging very fast to 0.



	Motivation	Results 000	Dimension one ○○●	Next O

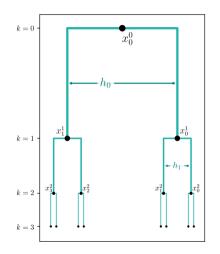
Let $F[\mu] \coloneqq \frac{1}{2}(id, -1)_{\#}\mu + \frac{1}{2}(id, 1)_{\#}\mu$. We want to construct $\mu \in \mathscr{P}_2(\mathbb{R})$ such that along $(h_n)_{n \in \mathbb{N}} \searrow 0$,

$$\frac{d_{\mathcal{W}}(\mu, \exp_{\mu}(h_n \cdot F[\mu]))}{h_n} \to_n 1 = \|F[\mu]\|_{\mu}.$$

For which measures does equality hold for $h_n > 0$?

$$\mu_{h_n}^{\mathsf{ex}} = \sum_i m_i \delta_{x_i}, \quad \text{with} \quad d(x_i, x_j) \geqslant 2h_n \quad \text{for } i \neq j.$$

- Find μ such that $d_{\mathcal{W}}(\mu, \mu_{h_n}^{\mathsf{ex}}) = o(h_n)$: $d_{\mathcal{W}}$ -limit of a sequence of atomic measures, splitting each atom by small distances converging very fast to 0.
- Limit is diffuse, and $d_{\mathcal{W}}(\mu, \exp_{\mu}(h_n \cdot F[\mu]))/h_n \rightarrow_n 1.$



Measure fields	Motivation	Results	Dimension one	Next
0000	00	000	○○●	O

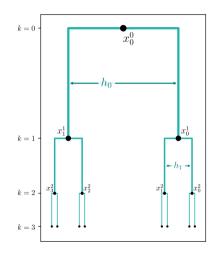
Let $F[\mu] \coloneqq \frac{1}{2}(id, -1)_{\#}\mu + \frac{1}{2}(id, 1)_{\#}\mu$. We want to construct $\mu \in \mathscr{P}_2(\mathbb{R})$ such that along $(h_n)_{n \in \mathbb{N}} \searrow 0$,

$$\frac{d_{\mathcal{W}}(\mu, \exp_{\mu}(h_n \cdot F[\mu]))}{h_n} \to_n 1 = \|F[\mu]\|_{\mu}.$$

For which measures does equality hold for $h_n > 0$?

$$\mu_{h_n}^{\mathsf{ex}} = \sum_i m_i \delta_{x_i}, \quad \text{with} \quad d(x_i, x_j) \geqslant 2h_n \quad \text{for } i \neq j.$$

- Find μ such that $d_{\mathcal{W}}(\mu, \mu_{h_n}^{\mathsf{ex}}) = o(h_n)$: $d_{\mathcal{W}}$ -limit of a sequence of atomic measures, splitting each atom by small distances converging very fast to 0.
- Limit is diffuse, and $d_{\mathcal{W}}(\mu, \exp_{\mu}(h_n \cdot F[\mu]))/h_n \rightarrow_n 1.$
- Tweak a little the example to get the limit when $h\searrow 0$.



Measure fields 0000	Results 000	Dimension one	Next O

Tangent and solenoidal measure fields

Motivation

Results

The case of dimension one

Table of Contents

Next

	Measure fields 0000				
--	-------------------------------	--	--	--	--

Conclusions on the classification

• For measure fields induced by maps, the limit of $\frac{d_{\mathcal{W}}(\mu, \exp_{\mu}(h \cdot \gamma))}{h}$ characterizes \mathbf{Tan}_{μ} and \mathbf{Sol}_{μ} .

M	Aeasure fields	Motivation	Results	Dimension one	Next
					•

Conclusions on the classification

- For measure fields induced by maps, the limit of $\frac{d_{\mathcal{W}}(\mu, \exp_{\mu}(h \cdot \gamma))}{h}$ characterizes \mathbf{Tan}_{μ} and \mathbf{Sol}_{μ} .
- It is also the case for any measure field if the measure μ is regular enough.

Measure fields	Motivation	Results	Dimension one	Next
				•

Conclusions on the classification

- For measure fields induced by maps, the limit of $\frac{d_{\mathcal{W}}(\mu, \exp_{\mu}(h \cdot \gamma))}{h}$ characterizes \mathbf{Tan}_{μ} and \mathbf{Sol}_{μ} .
- It is also the case for any measure field if the measure μ is regular enough.
- It is *not* the case in general.

м	Aeasure fields	Motivation	Results	Dimension one	Next
					•

Conclusions on the classification

- For measure fields induced by maps, the limit of $\frac{d_{\mathcal{W}}(\mu, \exp_{\mu}(h \cdot \gamma))}{h}$ characterizes Tan_{μ} and Sol_{μ} .
- It is also the case for any measure field if the measure μ is regular enough.
- It is *not* the case in general.

Open directions

• Dim 1 On which measures can we say that $\zeta \in \mathbf{Sol}_{\mu}$ implies $\limsup_{h \searrow 0} \frac{d_{\mathcal{W}(\mu, \exp_{\mu}(h \cdot \zeta))}}{h} < \|\zeta\|_{\mu}$?

Measure fields	Motivation	Results	Dimension one	Next
				•

Conclusions on the classification

- For measure fields induced by maps, the limit of $\frac{d_{\mathcal{W}}(\mu, \exp_{\mu}(h \cdot \gamma))}{h}$ characterizes Tan_{μ} and Sol_{μ} .
- It is also the case for any measure field if the measure μ is regular enough.
- It is *not* the case in general.

Open directions

- Dim 1 On which measures can we say that $\zeta \in \mathbf{Sol}_{\mu}$ implies $\limsup_{h \searrow 0} \frac{d_{\mathcal{W}(\mu, \exp_{\mu}(h \cdot \zeta))}}{h} < \|\zeta\|_{\mu}$?
- General case Get some classes for which the equivalences hold, understand what goes wrong.

Measure fields	Motivation	Results	Dimension one	Next

Thank you!

[AGS05] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient Flows. Lectures in Mathematics ETH Zürich. Birkhäuser-Verlag, Basel, 2005.

[Gig08] Nicola Gigli.

On the Geometry of the Space of Probability Measures Endowed with the Quadratic Optimal Transport Distance. PhD thesis, Scuola Normale Superiore di Pisa, Pisa, 2008.