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Measure fields Motivation Results Dimension one Next

Aim of the talk

Classify “measure fields” attached to a measure µ ∈ P2(Rd) by looking at the speed of the
straight curve that they induce.

• In Rd: Fix x a point, and v ∈ Tx Rd. Then lim
h↘0

d(x,x+hv)
h = |v|.

• For vector fields: Fix µ ∈ P2(Rd), and f ∈ L2
µ(Rd;Rd). If f = ∇φ for some φ ∈ C∞

c , then

lim
h↘0

dW (µ, (id+ hf)#µ)

h
= ∥f∥L2

µ
. (1)

Equality holds because (id, id+ hf)#µ is optimal for small h.
• The vector fields f for which (1) holds are “almost optimal near 0”. Very close to the metric

definition of the tangent cone: equivalent?
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Vocabulary

TRd = { (x, v) | x is a point, v is a vector }. For more than one vector, Tn Rd = {(x, v1, · · · , vn)}.

Def Given µ ∈ P2(Rd), we denote P2(TRd)µ the set of measure fields ξ such that πx#ξ = µ.

Two distances: the Wasserstein distance on the tangent bundle, denoted dW,TRd(·, ·), and

W 2
µ(ξ, ζ) := inf

α∈Γµ(ξ,ζ)

∫
(x,v,w)∈T2 Rd

|v − w|2 dα,

Γµ(ξ, ζ) :=
{
α = α(dx, dv, dw) ∈ P2(T

2 Rd)
∣∣ (πx, πv)#α = ξ, (πx, πw)#α = ζ

}
.

In particular, Wµ(f#µ, g#µ) = ∥f − g∥L2
µ

for any f, g ∈ L2
µ(Rd; TRd).
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The geometric tangent cone [AGS05, Gig08]

Fix µ ∈ P2(Rd). For ξ ∈ P2(TRd)µ, let

expµ(h · ξ) := (πx + hπv)#ξ ∈ P2(Rd).

The set Tanµ is defined as

Wµ

R+ ·
{
ξ ∈ P2(TRd)µ

∣∣ s 7→ expµ(s · ξ) geodesic
}

.

Examples:
• If µ = δx, then all measure fields are tangent (since they are all optimal).

• If µ ≪ Ld, then Tanµ = {(id,∇φ)#µ | φ ∈ C∞
c (Rd;R)}

Wµ

(Brenier-McCann).

[Gig08, Prop. 4.30] For ξ ∈ P2(TRd)µ, there is a unique πµ
T ξ minimizing Wµ(ξ, ·) over Tanµ.

Averil Aussedat Who’s who in P2 May 19, 2025 4 / 15



Measure fields Motivation Results Dimension one Next

The geometric tangent cone [AGS05, Gig08]

Fix µ ∈ P2(Rd). For ξ ∈ P2(TRd)µ, let

expµ(h · ξ) := (πx + hπv)#ξ ∈ P2(Rd).

The set Tanµ is defined as

Wµ

R+ ·

{
ξ ∈ P2(TRd)µ

∣∣ s 7→ expµ(s · ξ) geodesic
}

.

Examples:
• If µ = δx, then all measure fields are tangent (since they are all optimal).

• If µ ≪ Ld, then Tanµ = {(id,∇φ)#µ | φ ∈ C∞
c (Rd;R)}

Wµ

(Brenier-McCann).

[Gig08, Prop. 4.30] For ξ ∈ P2(TRd)µ, there is a unique πµ
T ξ minimizing Wµ(ξ, ·) over Tanµ.

Averil Aussedat Who’s who in P2 May 19, 2025 4 / 15



Measure fields Motivation Results Dimension one Next

The geometric tangent cone [AGS05, Gig08]

Fix µ ∈ P2(Rd). For ξ ∈ P2(TRd)µ, let

expµ(h · ξ) := (πx + hπv)#ξ ∈ P2(Rd).

The set Tanµ is defined as

Wµ

R+ ·
{
ξ ∈ P2(TRd)µ

∣∣ s 7→ expµ(s · ξ) geodesic
}

.

Examples:
• If µ = δx, then all measure fields are tangent (since they are all optimal).

• If µ ≪ Ld, then Tanµ = {(id,∇φ)#µ | φ ∈ C∞
c (Rd;R)}

Wµ

(Brenier-McCann).

[Gig08, Prop. 4.30] For ξ ∈ P2(TRd)µ, there is a unique πµ
T ξ minimizing Wµ(ξ, ·) over Tanµ.

Averil Aussedat Who’s who in P2 May 19, 2025 4 / 15



Measure fields Motivation Results Dimension one Next

The geometric tangent cone [AGS05, Gig08]

Fix µ ∈ P2(Rd). For ξ ∈ P2(TRd)µ, let

expµ(h · ξ) := (πx + hπv)#ξ ∈ P2(Rd).

The set Tanµ is defined as
Wµ

R+ ·
{
ξ ∈ P2(TRd)µ

∣∣ s 7→ expµ(s · ξ) geodesic
}

.

Examples:
• If µ = δx, then all measure fields are tangent (since they are all optimal).

• If µ ≪ Ld, then Tanµ = {(id,∇φ)#µ | φ ∈ C∞
c (Rd;R)}

Wµ

(Brenier-McCann).

[Gig08, Prop. 4.30] For ξ ∈ P2(TRd)µ, there is a unique πµ
T ξ minimizing Wµ(ξ, ·) over Tanµ.

Averil Aussedat Who’s who in P2 May 19, 2025 4 / 15



Measure fields Motivation Results Dimension one Next

The geometric tangent cone [AGS05, Gig08]

Fix µ ∈ P2(Rd). For ξ ∈ P2(TRd)µ, let

expµ(h · ξ) := (πx + hπv)#ξ ∈ P2(Rd).

The set Tanµ is defined as
Wµ

R+ ·
{
ξ ∈ P2(TRd)µ

∣∣ s 7→ expµ(s · ξ) geodesic
}

.

Examples:
• If µ = δx, then all measure fields are tangent (since they are all optimal).

• If µ ≪ Ld, then Tanµ = {(id,∇φ)#µ | φ ∈ C∞
c (Rd;R)}

Wµ

(Brenier-McCann).

[Gig08, Prop. 4.30] For ξ ∈ P2(TRd)µ, there is a unique πµ
T ξ minimizing Wµ(ξ, ·) over Tanµ.

Averil Aussedat Who’s who in P2 May 19, 2025 4 / 15



Measure fields Motivation Results Dimension one Next

The geometric tangent cone [AGS05, Gig08]

Fix µ ∈ P2(Rd). For ξ ∈ P2(TRd)µ, let

expµ(h · ξ) := (πx + hπv)#ξ ∈ P2(Rd).

The set Tanµ is defined as
Wµ

R+ ·
{
ξ ∈ P2(TRd)µ

∣∣ s 7→ expµ(s · ξ) geodesic
}

.

Examples:
• If µ = δx, then all measure fields are tangent (since they are all optimal).

• If µ ≪ Ld, then Tanµ = {(id,∇φ)#µ | φ ∈ C∞
c (Rd;R)}

Wµ

(Brenier-McCann).

[Gig08, Prop. 4.30] For ξ ∈ P2(TRd)µ, there is a unique πµ
T ξ minimizing Wµ(ξ, ·) over Tanµ.

Averil Aussedat Who’s who in P2 May 19, 2025 4 / 15



Measure fields Motivation Results Dimension one Next

The geometric tangent cone [AGS05, Gig08]

Fix µ ∈ P2(Rd). For ξ ∈ P2(TRd)µ, let

expµ(h · ξ) := (πx + hπv)#ξ ∈ P2(Rd).

The set Tanµ is defined as
Wµ

R+ ·
{
ξ ∈ P2(TRd)µ

∣∣ s 7→ expµ(s · ξ) geodesic
}

.

Examples:
• If µ = δx, then all measure fields are tangent (since they are all optimal).

• If µ ≪ Ld, then Tanµ = {(id,∇φ)#µ | φ ∈ C∞
c (Rd;R)}

Wµ

(Brenier-McCann).

[Gig08, Prop. 4.30] For ξ ∈ P2(TRd)µ, there is a unique πµ
T ξ minimizing Wµ(ξ, ·) over Tanµ.

Averil Aussedat Who’s who in P2 May 19, 2025 4 / 15



Measure fields Motivation Results Dimension one Next

The metric orthogonal: solenoidal measure fields

Consider the following “metric” generalization of the L2
µ scalar product:

⟨ξ, ζ⟩µ = sup
α∈Γµ(ξ,ζ)

∫
(x,v,w)∈T2 Rd

⟨v, w⟩ dα =
1

2

[
∥ξ∥2µ + ∥ζ∥2µ −W 2

µ(ξ, ζ)
]
.

Def Denote Solµ the set of ζ ∈ P2(TRd)µ such that ⟨ζ, ξ⟩µ = 0 for all ξ ∈ Tanµ.

Examples:
• If µ = δx, only the zero field 0µ = (id, 0)#µ.
• If µ ≪ Ld, then ζ ∈ Solµ iff ⟨BaryTRd (ζ),∇φ⟩L2

µ
= 0 for any φ ∈ C∞

c (Rd;R).

Proposition For any ξ ∈ P2(TRd)µ, there is a unique πµ
S ξ minimizing Wµ(ξ, ·) over Solµ.

Moreover, ξ = (πx, πv + πw)#α for some (optimal) α ∈ Γµ(π
µ
T ξ, π

µ
S ξ). (Helmholtz-Hodge!)
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Further examples

Of the tangent cone
Closing rescaled geodesics with
respect to Wµ allows to “cross
immediately”, if on small mass.

Of a solenoidal field
For µ = H1⌞S1, γ = (id,R)#µ:

Idea: find sequences
(xi)

N
i=1 ⊂ suppµ such that

R(xi) ∼ xi+1−xi

h .

Of projections
For µ = H1⌞S1, one can compute
πµ
T ξ and πµ

S ξ for some ξ. One has

ξ ∈ πµ
T ξ ⊕ πµ

S ξ,

but πµ
T ξ, π

µ
S ξ do not determine ξ.
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Closing rescaled geodesics with
respect to Wµ allows to “cross
immediately”, if on small mass.
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N
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h .
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The original question

Writing optimal control problems in P2(Rd), with ambition to link them to a “PDE”.

On the Wasserstein side On the metric side

Characteristics (µs)s satisfying Tangent cone defined from geodesics

∂sµs = − div (f · µs), with f ∈ Lip(Rd; TRd) Directional derivatives

How to take directional derivatives along (µs)s?
• Directly along h 7→ expµ(h · f#µ): not related to the tangent cone.

• Along the projection h 7→ expµ(h · πµ
T f#µ): less regular.

A way to win both: is it true that for all µ ∈ P2(Rd), and ξ ∈ P2(TRd)µ,

lim
h↘0

dW(expµ(h · ξ), expµ(h · πµ
T ξ))

h
= 0 ? (Q)
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Some implications

The question (Q) is whether lim
h↘0

dW(expµ(h·ξ),expµ(h·π
µ

T
ξ))

h = 0 for all ξ ∈ P2(TRd)µ.

On solenoidal fields
If ζ ∈ Solµ, then πµ

T ζ = 0µ.

One implication If

lim
h↘0

dW(µ, expµ(h · ζ))
h

= 0,

then ζ ∈ Solµ.

On tangent fields
Intuitively, if Solµ are losing time around
h = 0, then “not losing time around 0” should
mean “no Solµ part in the HH decomposition”.

One implication If ξ ∈ Tanµ, then

lim
h↘0

dW(µ, expµ(h · ξ))
h

= ∥ξ∥µ.
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dW,TRd−topology

Theorem – Approximation in dW,TRd Let ξ ∈ P2(TRd)µ. If

lim
h↘0

dW(µ, expµ(h · ξ))
h

= ∥ξ∥µ, (2)

then there exists a sequence (hn)n∈N ↘ 0 such that for all choices of optimal
plans ηn ∈ Γo(µ, expµ(hn · ξ)),

lim
n→∞

dW,TRd

(
ξ,
(
πx,

πy − πx

hn

)
#
ηn

)
= 0. (3)

If we can replace dW,TRd by Wµ in (3), we get that ξ ∈ Tanµ by definition.

Roughly, (2) forces the velocity of h 7→ expµ(h · ξ) to “align” with optimal plans, enough to get (3).
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Maps

Corollary – Map-induced fields Let γ = f#µ for some f ∈ L2
µ(Rd; TRd).

If lim
h↘0

dW(µ, expµ(h · γ))
h

= ∥γ∥µ, then γ ∈ Tanµ .

If γ ∈ Solµ, then lim
h↘0

dW(µ, expµ(h · γ))
h

= 0.

Moreover, for such γ, there holds dW(expµ(h · γ), expµ(h · πµ
T γ)) = o(h).

Argument: from the previous result, and the fact that the limit is induced by a map, one improves the
convergence from dW,TRd to Wµ.
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General case

Proposition There exists µ ∈ P2(R) and ζ ∈ Solµ such that

lim
h↘0

dW(µ, expµ(h · ζ))
h

= ∥ζ∥µ.

Catastrophy!
• The previous results (on maps) save us for the application to control problems.
• To understand, let us detail dimension one.
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Formula for Tanµ and Solµ

In dimension one, a measure µ can be written as µ = maµ
a +mdµ

d, with µa ∈ P2(R) purely atomic
and µd ∈ P2(R) diffuse (atomless).

Theorem One has
• ξ ∈ Tanµ if and only if ξ = maξ

a +mdf
d
# µ

d, with ξa ∈ P2(TR)µa and fd ∈ L2
µd(R; TR);

• ζ ∈ Solµ if and only if ζ = ma0µa +mdζ
d, with ζd ∈ P2(TR)µd centred (barycenter 0).

Arguments:
• on the diffuse part, Brenier-McCann-Gigli says optimal plans are maps, and L2

µd is closed for Wµd .

• On the atomic part, no condition. Merging both by approximation.
• Structure of solenoidal measure fields by orthogonality.
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Edge cases

If µ = µa is purely atomic, then Tanµ = P2(TR)µ and Solµ = {0µ}. The equivalences become trivial.

If µ is absolutely continuous with respect to the Lebesgue measure, the equivalences hold as well.

Argument Let µ = L[0,1] and ζ = 1
2 (id,−1)#µ+ 1

2 (id, 1)#µ.

expµ(h · ζ) = 1

2
L[−h,h]︸ ︷︷ ︸

moves ⩽h, mass h

+ L[h,1−h]︸ ︷︷ ︸
does not move

+
1

2
L[1−h,1+h]︸ ︷︷ ︸

moves ⩽h, mass h

.

Hence dW(µ, expµ(h · ζ)) ⩽
√
2× h2 × h = o(h).

By approximation for µ ≪ L and ζ centred.

For Tanµ, write ξ = (πx + πv + b(πx))#ξ
0 for ξ0 centred,

dW(µ, expµ(h · ξ)) ⩽ dW(µ, expµ(h · ξ0)) + ∥b∥µ.
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If µ is absolutely continuous with respect to the Lebesgue measure, the equivalences hold as well.

Argument Let µ = L[0,1] and ζ = 1
2 (id,−1)#µ+ 1

2 (id, 1)#µ.

expµ(h · ζ) = 1

2
L[−h,h]︸ ︷︷ ︸

moves ⩽h, mass h

+ L[h,1−h]︸ ︷︷ ︸
does not move

+
1

2
L[1−h,1+h]︸ ︷︷ ︸

moves ⩽h, mass h

.

Hence dW(µ, expµ(h · ζ)) ⩽
√
2× h2 × h = o(h).

By approximation for µ ≪ L and ζ centred.

For Tanµ, write ξ = (πx + πv + b(πx))#ξ
0 for ξ0 centred,

dW(µ, expµ(h · ξ)) ⩽ dW(µ, expµ(h · ξ0)) + ∥b∥µ.
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Situation so far maps plans

purely atomic

abs. continuous
m m

Cantor part m þ
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A counterexample

Let F [µ] := 1
2 (id,−1)#µ+ 1

2 (id, 1)#µ. We want to construct
µ ∈ P2(R) such that along (hn)n∈N ↘ 0,

dW(µ, expµ(hn · F [µ]))

hn
→n 1 = ∥F [µ]∥µ.

For which measures does equality hold for hn > 0?

µex
hn

=
∑
i

miδxi , with d(xi, xj) ⩾ 2hn for i ̸= j.

• Find µ such that dW(µ, µex
hn

) = o(hn): dW−limit of a
sequence of atomic measures, splitting each atom by
small distances converging very fast to 0.

• Limit is diffuse, and dW(µ, expµ(hn · F [µ]))/hn →n 1.
• Tweak a little the example to get the limit when h ↘ 0.
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Current picture and conjectures

Conclusions on the classification
• For measure fields induced by maps, the limit of dW(µ,expµ(h·γ))

h characterizes Tanµ and Solµ.

• It is also the case for any measure field if the measure µ is regular enough.
• It is not the case in general.

Open directions

• Dim 1 On which measures can we say that ζ ∈ Solµ implies lim suph↘0
dW(µ,expµ(h·ζ))

h < ∥ζ∥µ?

• General case Get some classes for which the equivalences hold, understand what goes wrong.
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Thank you!
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