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Curves of measures Control problems Viscosity solutions Results so far

Aim of the talk

Introduce a formalism to optimize motions of crowds by a central planner.

• crowds: Borel probability measures.
• motion of crowds: solutions of “ODEs” in the space of measures.
• central planner: control on the dynamic of the ODE.
• formalism: Hamilton-Jacobi-Bellman equations.

Figure: Invitation to the geometry coming from optimal transport!
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Notations

Throughout the talk,
• TRd denotes the tangent bundle, i.e. the set of (x, v) such that x ∈ Rd and v ∈ TxRd,

• P(Rd) is the set of Borel probability measures on Rd,
• # is the pushforward operator: given X,Y are topological spaces, f : X → Y measurable

and µ ∈ P(X), the measure f#µ ∈ P(Y ) is defined by

(f#µ)(A) := µ
(
f−1(A)

)
∀A ⊂ Y measurable.

Example If X = TRd, Y = Rd and πx : (x, v) → x is the projection on the point
coordinate, then any ξ ∈ P(TRd) has for base measure πx#ξ ∈ P(Rd).
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The Wasserstein distance between measures

Let µ, ν ∈ P(Rd) be two probability measures,

and denote
the set of transport plans by

Γ(µ, ν) :=
{
η ∈ P((Rd)2)

∣∣∣ πx#η = µ, πy#η = ν
}
.

The Monge-Kantorovich distance with order p ∈ [1,∞) is

dpW,p(µ, ν) := inf
η∈Γ(µ,ν)

∫
(x,y)

|x− y|p dη(x, y).

Def We call Wasserstein space the set P2(Rd) :=
{
µ ∈ P(Rd)

∣∣ dW(µ, δ0) <∞
}
,

endowed with the distance dW = dW,2 associated with the quadratic cost |x− y|2.
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Interpretation of the Wasserstein distance

The topology induced by dW
• is weaker than that induced by the total variation |µ|TV = supP

∑
P∈P |µ(P )|, where P

ranges in countable Borel partitions. For instance, |δx − δy|TV = 2 whenever x ̸= y, but
dW(δx, δy) = |x− y|.

• is stronger than the weak-* topology: for instance, let µn :=
(
1− 1

n2

)
δ0 +

1
n2 δn.

• does not induce convergence of supports: the centered Gaussian with variance ε converges
(in Wasserstein) towards δ0 when ε→ 0, but has full support for all ε > 0.
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Absolutely continuous curves

A curve (yt)t∈[0,1] is called 2−absolutely continuous if there exists g ∈ L2(0, 1;R+) such that

d2(yt, ys) ⩽
∫ t

τ=s
g2(τ)dτ ∀ s, t ∈ [0, 1].

In Rd, equivalently “curves that are integrals of their derivative”. Similar result in P2(Rd):

Theorem – Characterization of AC curves [AGS05] A curve of measures (µt)t∈[0,1]
is absolutely continuous in

(
P2(Rd), dW

)
if and only if there exists an a.e.-defined mea-

surable curve (vt)t∈[0,1], with vt ∈ L2
µt
(Rd;TRd) for a.e. t ∈ [0, 1], such that

∂tµt + div (vt#µt) = 0

in the sense of distributions.
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Dynamical systems

Absolutely continuous curves are a very weak setting. Stronger regularity?

Consider

∂tµt + div (f(t, ·, µt)#µt) = 0 (Conty)

• Existence and uniqueness when the dynamic does not depend of the measure in [AGS05].
• Cauchy-Lipschitz setting, then Carathéodory setting, in [BF21, BF23].

Theorem – Bonnet-Frankowska 2023 Assume that f : [0, T ]×Rd×P2(Rd) → TRd

is measurable in time, continuous in space and measure. Then from any µ0 ∈ P2(Rd)
is issued at least one solution of (Conty). If moreover f is Lipschitz-continuous in space
and measure, uniqueness and estimates.
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Representation

Example of admissible dynamic:

f(t, x, µ) := g(t, x) +

∫
y∈Rd

ψ(y)dµ(y),

where ψ continuous with quadratic growth.

Good frame for integro-differential equations?

It can be shown that any solution (µt)t∈[0,T ] of the continuity equation (Conty) is representable
as a superposition of flow lines: there exists a measure η ∈ P2(AC([0, T ];Rd)) such that

µt = et#η, i.e.
∫
x∈Rd

φ(x)dµt(x) =

∫
γ∈AC([0,T ];Rd)

φ(γt)dη(γ),

and η is concentrated on the solutions of the ODE system γ̇t = f(t, γt, µt).
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µt = et#η, i.e.
∫
x∈Rd

φ(x)dµt(x) =

∫
γ∈AC([0,T ];Rd)

φ(γt)dη(γ),

and η is concentrated on the solutions of the ODE system γ̇t = f(t, γt, µt).
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Definition in Rd

Let f : Rd ×U → TRd be a dynamic depending on a state variable x and a control variable u.

Def – Mayer control problem Let J : Rd → R be a cost function. Given x0 ∈ Rd,
find u(·) ∈ L∞(0, T ;U) such that

J(y0,x,uT ) ⩽ J(y0,x,vT ),

where
(
y0,x,us

)
s∈[0,T ]

solves ẏs = f(ys, u(s)), and y0,x,u0 = x.

• Contains formulations with running cost and/or optimal stopping time problem.
• Pontryagin maximum principle, Ricatti equation (linear quadratic case), Bellman principle.
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Why formulate it with measures?

Taking P2(Rd) as the state space arise naturally from
• crowd motion: individuals (sum of Dirac masses) or crowds (measures with density),

controlled by a central planner (flock of drones). Not mean field games.

• robust control and/or physical uncertainty: consider not only the trajectory of one point,
but also of a distribution around neighbours.
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Solving control problems via dynamic programming

Idea of dynamic programming:
• introduce the value function V (t, x) := infu∈L∞(t,T ;U) J(y

t,x,u
T ).

• If V is smooth, then the optimal trajectory can be recovered from V .
• Prove that V satisfies a PDE (known as Hamilton-Jacobi-Bellman) and use PDE

numerical methods to solve it.

Problem: the value function is usually not smooth.

Typical example: distance to the boundary. Thus need for
• nonsmooth analysis to recover the optimal trajectory,
• viscosity solutions to give a meaning to the PDE.
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Viscosity solutions in short

Consider H(x,∇xu(x)) = 0 in an open Ω ⊂ Rd. Viscosity solutions are equivalently defined by

• smooth test functions:
u is a subsolution if it is u.s.c, satisfies
u⩽⩽⩽ J on ∂Ω, and if whenever φ ∈ C1 is
such that u− φ reaches a maximum at x,

there holds H (x,∇φ(x)) ⩽⩽⩽ 0.

• sub and superdifferentials:
u is a subsolution if it is u.s.c, satisfies
u⩽⩽⩽ J on ∂Ω, and if whenever v belongs
to the superdifferential of u at x,

there holds H (x, v) ⩽⩽⩽ 0.
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Viscosity solutions

Ishii 1985: discontinuous solut°s Maslov 1997: (max,+)

Crandall-Lions
1982-1983:
foundations,
Hopf-Lax

Aubin-Cellina 1986: viability Giga 2013-2015: metric

Barron-Jensen 1990: bilateral
viscosity

Barles-Chasseigne 2024:
stratifications

• uniqueness by comparison principle extending the maximum principle of elliptic equations.
• good properties of stability, with limits under uniform convergence in 2nd order equations.
• Perron’s method for proving existence by contradiction, using uniqueness and stability.
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The problem

Objective: extend viscosity solutions when the state space is P2(Rd).

Existing extensions cover
• Hilbert spaces [FGŚ17], Banach spaces [LY95, MS88], in which the term ∇xu makes sense.
• Metric spaces [GHN15] whenever the equation only uses |∇xu(x)|, can be replaced by the

metric slope.
The Wasserstein space is attractive for its structure: metric, geodesic, curved space, good
notions of trajectories, easy interpretation, setting of mean field games, applications...

But how to understand differential calculus?
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The Lions formulation (1/2)

Back to the beginning: differential calculus should offer tools to characterize and control the
local variations of a function. Variations along which curves?

Proposition – Moving around regular measures [BBG02] If µ ∈ P2(Rd) is “suf-
ficiently regular” (thinks absolutely continuous w.r.t. the Lebesgue measure), then any
geodesic (in the Wasserstein space) leaving µ is of the form

s 7→ (id+ sf)#µ

for some f ∈ L2
µ(Rd;TRd).

In a sense, linearization of P2(Rd) around µ by using the Hilbert space L2
µ(Rd;TRd).

Averil Prost Thinking horizontally April 30, 2024 18 / 28



Curves of measures Control problems Viscosity solutions Results so far

The Lions formulation (1/2)

Back to the beginning: differential calculus should offer tools to characterize and control the
local variations of a function. Variations along which curves?

Proposition – Moving around regular measures [BBG02] If µ ∈ P2(Rd) is “suf-
ficiently regular” (thinks absolutely continuous w.r.t. the Lebesgue measure), then any
geodesic (in the Wasserstein space) leaving µ is of the form

s 7→ (id+ sf)#µ

for some f ∈ L2
µ(Rd;TRd).

In a sense, linearization of P2(Rd) around µ by using the Hilbert space L2
µ(Rd;TRd).

Averil Prost Thinking horizontally April 30, 2024 18 / 28



Curves of measures Control problems Viscosity solutions Results so far

The Lions formulation (1/2)

Back to the beginning: differential calculus should offer tools to characterize and control the
local variations of a function. Variations along which curves?

Proposition – Moving around regular measures [BBG02] If µ ∈ P2(Rd) is “suf-
ficiently regular” (thinks absolutely continuous w.r.t. the Lebesgue measure), then any
geodesic (in the Wasserstein space) leaving µ is of the form

s 7→ (id+ sf)#µ

for some f ∈ L2
µ(Rd;TRd).

In a sense, linearization of P2(Rd) around µ by using the Hilbert space L2
µ(Rd;TRd).

Averil Prost Thinking horizontally April 30, 2024 18 / 28



Curves of measures Control problems Viscosity solutions Results so far

The Lions formulation (2/2)

Def – Lions-Gangbo derivative An application u : P2(Rd) → R is differentiable in
the Lions sense at µ ∈ P2(Rd) if there exists an element f ∈ L2

µ(Rd;TRd) such that

u(ν)− u(µ) =

∫
(x,y)∈(Rd)2

⟨f(x), y − x⟩ dη(x, y) + o(dW(µ, ν))

for any η ∈ Γo(µ, ν) an optimal transport plan, and any ν ∈ P2(Rd).

• Then u : P2(Rd) → R is C1 if there exists a continuous map f : Rd × P2(Rd) → TRd

such that for each µ, the element f(·, µ) belongs to L2
µ and is a gradient of u.

• Provides a set of admissible test functions to define viscosity solutions!
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The good and the bad about this definition

• Extensive litterature, various equivalent formulations of the definition, growing corpus of
results of existence, uniqueness and stability of smooth solutions for mean field games
systems [CD18, CDLL19, DS23].

However from the beginning, clear that
• the squared Wasserstein distance is not differentiable in the Lions-Gangbo sense (only at

smooth measures).
• The “linearization” of the space by L2

µ is not valid whenever µ is degenerated: for instance,
if µ = δ0, only allows to move towards other Dirac masses.

• The theory of viscosity solutions is global and uses every point. Inconsistencies appear
when trying to link the viscosity theory using Lions-Gangbo derivatives, and metric
viscosity [AF14].
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Directional derivatives

Back again to the beginning: variations along elements of the (larger) geometric tangent space
TanµP2(Rd) ⊂ P2(TRd) [Gig08].

To each element ξ ∈ TanµP2(Rd) is associated

s 7→ (πx + hπv)#ξ,

that generalises s 7→ (id+ hf(·))#µ.
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TanµP2(Rd) ⊂ P2(TRd) [Gig08]. To each element ξ ∈ TanµP2(Rd) is associated

s 7→ (πx + hπv)#ξ,

that generalises s 7→ (id+ hf(·))#µ.

Def – Directional derivatives The differential of an application u : P2(Rd) → R at
a measure µ is the application

Dµu : TanµP2(Rd) → R, Dµu(ξ) := lim
h↘0

u ((πx + hπv)#ξ)− u(µ)

h
.
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Viscosity solutions with directional derivatives

Let H be defined on couples (µ, p), where p : TanµP2(Rd) → R is sufficiently regular (for
instance, Lipschitz-continuous, positively homogeneous, representable by inf/sup over some
set...). Consider the equation

H(µ,Dµu) = 0. (HJ)

Def A map u : P2(Rd) → R is a viscosity of (HJ) if for any µ ∈ P2(Rd) and loc.
Lip. φ : P2(Rd) → R such that u− φ reaches a at µ,

H(x,Dµφ)0.

• Semiconcavity/semiconvexity regularity ensures that φ is directionally differentiable.
• Inspired from the theory developed in non-positively curved spaces by O. Jerhaoui [Jer22].
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and loc. Lip. semiconcave φ : P2(Rd) → R such that u−φ reaches a maximum at µ,

H(x,Dµφ)⩽⩽⩽ 0.

• Semiconcavity/semiconvexity regularity ensures that φ is directionally differentiable.
• Inspired from the theory developed in non-positively curved spaces by O. Jerhaoui [Jer22].
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Strong comparison principle

Consider the parabolic equation

−∂tu(t, µ) +H (µ,Dµu) = 0, u(T, µ) = J(µ).

Theorem – Comparison principle [JPZ23] Assume thatH is positively homogeneous
and Lipschitz-continuous in its second argument, and satisfies

H
(
µ,−Dµd

2
W(·, ν)

)
−H

(
ν,Dνd

2
W(µ, ·)

)
⩽ Cd2W(µ, ν)

for some constant C ⩾ 0.

Then for any bounded subsolution u : [0, T ] × P2(Rd) → R
and bounded supersolution v : [0, T ]× P2(Rd) → R, there holds

sup
(t,µ)∈[0,T ]×P2(Rd)

u(t, µ)− v(t, µ) ⩽ sup
µ∈P2(Rd)

u(T, µ)− v(T, ν).
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Link with the value function

In the previous theorem,
• no assumption of continuity over u and v. Boundedness may be weakened.

• A version exists in compact manifolds without borders [Jer22].
• Assumptions on H typical for control problems, not satisfied for game problems.

Theorem – Characterization of the value function Assume that the dynamic of the
Mayer problem is bounded and Lipschitz-continuous in all its arguments, and that J is
Lipschitz-continuous. Then the value function is the unique viscosity solution of the HJB
equation

−∂tV (t, µ) + sup
u∈U

−DµV (f(·, µ)#µ) = 0, V (T, µ) = J(µ).
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The case of possibly infinite cost

Assume now that J : P2(Rd) → R ∪ {+∞} is weak-∗ lower semicontinuous on every
Wasserstein ball, and that the dynamic does not depend on the measure variable.

Then the
flow map

ν 7→ µT , ∂tµs + div (f#µs) = 0, µ0 = ν

has the same lower semicontinuity.

Theorem – [HP24] In the above setting, the value function is the smallest viscosity
supersolution of the HJB equation.

• Uses a (nice) topology rendering P2(Rd) locally compact, removes a lot of technicalities.
• Proceeds by approximation of J from below, and uses well-posedness in this case.
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Strengths and weaknesses

Advantages
• No need to restrict over a smooth

dense set, or to rely on ellipticity.

• Quite simple formulation, coherent
across a large family of geodesic
spaces.

• When applicable, coherent with
metric viscosity.

Challenges
• Purely first order techniques, seems

difficult to adapt to second-order.
• Depending on the curvature of the

space, lack of results concerning
stability. Typically, no result in the
Wasserstein space.
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Conclusion

Conclusion
• Still an active debate on the correct notion of viscosity solution.

• Whenever smoothness is available, the Lions theory seems the correct notion.
• Whenever every measure counts, geometrical problems. Our proposition allows to

circumvene part of them, at the cost of stability.

Perspectives
• Include state constraints (ongoing work of E. Treumún).
• Other base space than Rd (ongoing work).
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Thank you!
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