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First notations

Let TΩ = {(x, v)}, with x ∈ Ω = Rd, and v ∈ Tx Ω ∼ Rd.

Fix µ ∈ P2(Ω), and denote

P2(TΩ)µ := {ξ ∈ P2(TΩ) | πx#ξ = µ} .

Any ξ ∈ P2(TΩ)µ can be disintegrated as ξ = ξx ⊗ µ, called “measure field” instead of “vector field”.

Definition – L2
µ−like distance on P2(TΩ)µ For any ξ, ζ ∈ P2(TΩ)µ, let

W 2
µ(ξ, ζ) :=

∫
x∈Ω

W 2(ξx, ζx)dµ(x).

Wµ comes with its “scalar product”

⟨ξ, ζ⟩µ :=
1

2

[
W 2

µ(ξ, 0µ) +W 2
µ(ζ, 0µ)−W 2

µ(ξ, ζ)
]
=

∫
x∈Ω

sup
αx∈Γ(ξx,ζx)

∫
(v,w)

⟨v, w⟩ dαx(v, w)dµ(x).
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Some literature on this pseudo-Hilbertian structure

• Introduced in [AGS05]1 and [Gig08]2 along with a scalar multiplication and a set-valued sum.

• Appears for “generalized” subdifferentials in [AF14]3 and [Ber24]4, to define viscosity solutions.
• Appears in Measure Differential Equations ([Pic19]5, [Cam+21]6, [Sch25]7) and flows of dissipative

measure fields ([CSS23a]8, [CSS23b]9), with aim to allow mass splitting.
• Recent work [LTD24]10 providing KKT conditions.

1L. Ambrosio, N. Gigli, and G. Savaré, Gradient Flows (2005).
2N. Gigli, “On the geometry of the space of probability measures endowed with the quadratic optimal transport distance” (2008).

3L. Ambrosio and J. Feng, “On a class of first order Hamilton–Jacobi equations in metric spaces” (2014).
4C. Bertucci, “Stochastic optimal transport and Hamilton–Jacobi–Bellman equations on the set of probability measures” (2024).
5B. Piccoli, “Measure Differential Equations” (2019).
6F. Camilli et al., “Superposition principle and schemes for Measure Differential Equations” (2021).
7A. Schichl, Non-linear degenerate parabolic flow equations and a finer differential structure on Wasserstein spaces (2025).
8G. Cavagnari, G. Savaré, and G. E. Sodini, A Lagrangian approach to totally dissipative evolutions in Wasserstein spaces (2023).
9G. Cavagnari, G. Savaré, and G. E. Sodini, “Dissipative probability vector fields and generation of evolution semigroups in Wasserstein
spaces” (2023).

10N. Lanzetti, A. Terpin, and F. Dörfler, Variational Analysis in the Wasserstein Space (2024).
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Orthogonality

If ξ = (id, f)#µ for some f ∈ L2
µ(Ω;Rd), then ξx = δf(x), so that

⟨ξ, ζ⟩µ =

∫
x∈Ω

∫
w

⟨f(x), w⟩ dζx(w)dµ(x) = ⟨f,Bary (ζ)⟩L2
µ
.

Observation P2(TΩ)µ splits orthogonally into
• the set of ξ that are induced by a map,
• the set of ξ with barycenter 0, noted P2(TΩ)0µ.

Bary (ξ) = 0 iff (πx, πx + πv)#ξ is a “martingale plan”.

On P2(TΩ)0µ, very strong property:

⟨ξ, ζ⟩µ = 0

if and only if ⟨ξx, ζx⟩δx = 0 for µ−a.e. x.

For centred fields, orthogonality is a local phenomenon.
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Closed convex cone of centred fields

Theorem [Aus25]1 Let A ⊂ P2(TΩ)0µ be a Wµ−closed nonnegative cone, which is convex
along interpolation through any plan respecting the fibers.

Then there exists a measurable appli-
cation D such that D(x) is a vector space, and

ξ ∈ A ⇐⇒ [ξ is centred and v ∈ D(x) for ξ − almost any (x, v).]

• Proved by passing to the orthogonal complement and exploiting the
geometry induced by ⟨·, ·⟩µ.

• Starts with a “nonnegative cone”, ends with a “two-sided cone”.
• Proves convexity as measures.

1A. Aussedat, Local structure of centred tangent cones in the Wasserstein space (2025). [ArXiv preprint, same as in the rest of the talk]
Averil Aussedat Local characterization November 19, 2025 5 / 16



Centred measure fields Tangent measure fields Zajíček’s theorem Decomposition in the general case

Closed convex cone of centred fields

Theorem [Aus25]1 Let A ⊂ P2(TΩ)0µ be a Wµ−closed nonnegative cone, which is convex
along interpolation through any plan respecting the fibers. Then there exists a measurable appli-
cation D such that D(x) is a vector space, and

ξ ∈ A ⇐⇒ [ξ is centred and v ∈ D(x) for ξ − almost any (x, v).]

• Proved by passing to the orthogonal complement and exploiting the
geometry induced by ⟨·, ·⟩µ.

• Starts with a “nonnegative cone”, ends with a “two-sided cone”.
• Proves convexity as measures.

1A. Aussedat, Local structure of centred tangent cones in the Wasserstein space (2025). [ArXiv preprint, same as in the rest of the talk]
Averil Aussedat Local characterization November 19, 2025 5 / 16



Centred measure fields Tangent measure fields Zajíček’s theorem Decomposition in the general case

Closed convex cone of centred fields

Theorem [Aus25]1 Let A ⊂ P2(TΩ)0µ be a Wµ−closed nonnegative cone, which is convex
along interpolation through any plan respecting the fibers. Then there exists a measurable appli-
cation D such that D(x) is a vector space, and

ξ ∈ A ⇐⇒ [ξ is centred and v ∈ D(x) for ξ − almost any (x, v).]

• Proved by passing to the orthogonal complement and exploiting the
geometry induced by ⟨·, ·⟩µ.

• Starts with a “nonnegative cone”, ends with a “two-sided cone”.
• Proves convexity as measures.

1A. Aussedat, Local structure of centred tangent cones in the Wasserstein space (2025). [ArXiv preprint, same as in the rest of the talk]
Averil Aussedat Local characterization November 19, 2025 5 / 16



Centred measure fields Tangent measure fields Zajíček’s theorem Decomposition in the general case

Closed convex cone of centred fields

Theorem [Aus25]1 Let A ⊂ P2(TΩ)0µ be a Wµ−closed nonnegative cone, which is convex
along interpolation through any plan respecting the fibers. Then there exists a measurable appli-
cation D such that D(x) is a vector space, and

ξ ∈ A ⇐⇒ [ξ is centred and v ∈ D(x) for ξ − almost any (x, v).]

• Proved by passing to the orthogonal complement and exploiting the
geometry induced by ⟨·, ·⟩µ.

• Starts with a “nonnegative cone”, ends with a “two-sided cone”.

• Proves convexity as measures.

1A. Aussedat, Local structure of centred tangent cones in the Wasserstein space (2025). [ArXiv preprint, same as in the rest of the talk]
Averil Aussedat Local characterization November 19, 2025 5 / 16



Centred measure fields Tangent measure fields Zajíček’s theorem Decomposition in the general case

Closed convex cone of centred fields

Theorem [Aus25]1 Let A ⊂ P2(TΩ)0µ be a Wµ−closed nonnegative cone, which is convex
along interpolation through any plan respecting the fibers. Then there exists a measurable appli-
cation D such that D(x) is a vector space, and

ξ ∈ A ⇐⇒ [ξ is centred and v ∈ D(x) for ξ − almost any (x, v).]

• Proved by passing to the orthogonal complement and exploiting the
geometry induced by ⟨·, ·⟩µ.

• Starts with a “nonnegative cone”, ends with a “two-sided cone”.
• Proves convexity as measures.

1A. Aussedat, Local structure of centred tangent cones in the Wasserstein space (2025). [ArXiv preprint, same as in the rest of the talk]
Averil Aussedat Local characterization November 19, 2025 5 / 16



Centred measure fields Tangent measure fields Zajíček’s theorem Decomposition in the general case

Table of Contents

Centred measure fields

Tangent measure fields

Zajíček’s theorem

Decomposition in the general case

Averil Aussedat Local characterization November 19, 2025 5 / 16



Centred measure fields Tangent measure fields Zajíček’s theorem Decomposition in the general case

Centred tangent fields

Definition – Geometric tangent cone [Gig08]1 Tanµ is the Wµ−closure of the measure
fields of the form (πx, λπv)#ξ, where λ ⩾ 0, and ξ induces a geodesic, i.e.

ξ = (πx, πy − πx)#η for η optimal plan between µ and some ν ∈ P2(Ω).

Denote Tan0
µ = Tanµ ∩P2(TΩ)0µ the set of centred tangent measure fields.

By Proposition 4.25 of the same reference, Tan0
µ is a closed convex cone of centred fields.

Corollary Any µ ∈ P2(Ω) admits D such that ξ ∈ Tan0
µ iff ξ is centred and ξ(graphD) = 1.

1N. Gigli, “On the geometry of the space of probability measures endowed with the quadratic optimal transport distance” (2008).
Averil Aussedat Local characterization November 19, 2025 6 / 16
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Examples

Example 1. If µ = δ0, any plan is optimal, so that Tan0
µ = P2(TΩ)0µ, and D ≡ Rd.

Example 2. If µ ≪ L, any optimal plan is induced by a map, so Tan0
µ = {0µ} and D ≡ {0}.

Example 3. If µ = (id, 0)#L[0,1] in dimension 2, then D(x) ≡ span{e2}.

Indeed, any ξ concentrated on graphD induces a geodesic.

Conversely, if ξ is centred and optimal, then so is
(πx, ⟨πv, e1⟩ e1)#ξ. Indeed, for (xi, vi)

N
i=1 ⊂ supp ξ,

N∑
i=1

⟨xi − xi−1, xi + vi⟩ ⩾ 0.

≃ 1D optimal plan from L[0,1], hence induced by a map,
hence 0, so v ⊥ e1 ξ−a.e.. Up to details, passes to Tan0

µ.

Averil Aussedat Local characterization November 19, 2025 7 / 16
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Example 2. If µ ≪ L, any optimal plan is induced by a map, so Tan0
µ = {0µ} and D ≡ {0}.

Example 3. If µ = (id, 0)#L[0,1] in dimension 2, then D(x) ≡ span{e2}.

Indeed, any ξ concentrated on graphD induces a geodesic.

Conversely, if ξ is centred and optimal, then so is
(πx, ⟨πv, e1⟩ e1)#ξ. Indeed, for (xi, vi)

N
i=1 ⊂ supp ξ,

N∑
i=1

⟨xi − xi−1, xi + vi⟩ ⩾ 0.

≃ 1D optimal plan from L[0,1], hence induced by a map,
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Lott’s result

Theorem 1.1 of [Lot16]1 If
• M is a smooth submanifold of dimension k,
• µ ≪ Hk M, with Hk the Hausdorff measure,

then ξ ∈ Tan0
µ if and only if (ξ is centred and)

v ⊥ Tx M ξ − almost everywhere.

In other words, D(x) = (Tx M)⊥.

1J. Lott, “On tangent cones in Wasserstein space” (2016).
Averil Aussedat Local characterization November 19, 2025 8 / 16
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Centred measure fields Tangent measure fields Zajíček’s theorem Decomposition in the general case

Statement

Definition A set A ⊂ Rd is DCk (Difference of Convex of dim k) if up to permuting the axes,

A =
{
(x1, · · · , xk,Φ(x1, · · · , xk))

∣∣ Φ : Rk → Rd−k, with each Φi = convex − convex
}
.

A set A is σ−DCk if is can be covered by countably many DCk sets.

Given φ : Rd → R convex, let Jk(φ) :=
{
x ∈ Rd

∣∣ dim ∂xφ ⩾ d− k
}
.

Theorem 1 of [Zaj79]1 If φ : Rd → R is convex, then each Jk(φ) is σ−DCk.
Conversely, if A ⊂ Rd is σ−DCk, there exists a convex φ : Rd → R such that A ⊂ Jk(φ).

1L. Zajíček, “On the differentiation of convex functions in finite and infinite dimensional spaces” (1979).
See also G. Alberti, “On the structure of singular sets of convex functions” (1994).
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An application

Let S ⊂ Rd be closed, and consider

T :=
{
x ∈ Rd

∣∣ projS(x) has more than one element
}
.

Then T is σ−DCd-1.

Indeed, consider

φ(x) := min
y∈S

|x− y|2 = |x|2 +min
y∈S

−2 ⟨x, y⟩+ |y|2.

Then φ is semiconcave and Jd−1(φ) = T .
By Zajíček, T is σ−DCd-1.

The set on which there is a decision to make is σ−DCd-1.
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Statement

Theorem Let µ ∈ P2(Ω).

There exists a unique decomposition µ =
∑d

k=0 µk in mutually
singular measures such that

• µk is concentrated on a σ−DCk set Ak, and gives 0 mass to DCj sets for j < k;
• the application D characterizing Tan0

µ is given by D(x) = (Tx Ak)
⊥ for µk−a.e. x ∈ Ω.

Explicitly, ξ ∈ Tan0
µ if and only if ξ is (centred and) concentrated on the normal spaces to each Ak.

Averil Aussedat Local characterization November 19, 2025 11 / 16
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Projection on Tan0
µ

For each x, denote projD(x) : Rd → Rd the projection over D(x).

Corollary For any ξ ∈ P2(TΩ)0µ, the measure field

ξD := (πx, projD(x)(πv))#ξ

is the unique minimizer of Wµ(ζ, ξ) over ζ ∈ Tan0
µ.

By construction, ξD ∈ Tan0
µ. Conversely, let ζ ∈ Tan0

µ, and α realize Wµ(ζ, ξ). Then

W 2
µ(ζ, ξ) =

∫
|v − w|2dα ⩾

∫
|projD(x)(w)− w|2dα ⩾ W 2

µ(ξD, ξ).

Averil Aussedat Local characterization November 19, 2025 12 / 16



Centred measure fields Tangent measure fields Zajíček’s theorem Decomposition in the general case

Projection on Tan0
µ

For each x, denote projD(x) : Rd → Rd the projection over D(x).

Corollary For any ξ ∈ P2(TΩ)0µ, the measure field

ξD := (πx, projD(x)(πv))#ξ

is the unique minimizer of Wµ(ζ, ξ) over ζ ∈ Tan0
µ.

By construction, ξD ∈ Tan0
µ. Conversely, let ζ ∈ Tan0

µ, and α realize Wµ(ζ, ξ). Then

W 2
µ(ζ, ξ) =

∫
|v − w|2dα ⩾

∫
|projD(x)(w)− w|2dα ⩾ W 2

µ(ξD, ξ).

Averil Aussedat Local characterization November 19, 2025 12 / 16



Centred measure fields Tangent measure fields Zajíček’s theorem Decomposition in the general case

Projection on Tan0
µ

For each x, denote projD(x) : Rd → Rd the projection over D(x).

Corollary For any ξ ∈ P2(TΩ)0µ, the measure field

ξD := (πx, projD(x)(πv))#ξ

is the unique minimizer of Wµ(ζ, ξ) over ζ ∈ Tan0
µ.

By construction, ξD ∈ Tan0
µ. Conversely, let ζ ∈ Tan0

µ, and α realize Wµ(ζ, ξ). Then

W 2
µ(ζ, ξ) =

∫
|v − w|2dα ⩾

∫
|projD(x)(w)− w|2dα ⩾ W 2

µ(ξD, ξ).

Averil Aussedat Local characterization November 19, 2025 12 / 16



Centred measure fields Tangent measure fields Zajíček’s theorem Decomposition in the general case

How does it work: the measures (µk)k

Natural candidates: µk = µ {dimD = d− k}.

How to get concentration on a σ−DCk set?

Lemma Tan0
µk

coincides with the “restriction” of Tan0
µ to {dimD = d− k}.

Now,
• get ξk ∈ Tan0

µk
splitting mass in d− k directions.

• Approximate by an optimal plan, which splits mass in d− k directions on a set of large µk−mass.
• Hence some Kantorovich potential must have a subdifferential of dimension d− k.

Kantorovich potentials are semiconvex, so by Zajíček, µk is concentrated on a σ−DCk set Ak.
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How does it work: the tangent planes TxAk

Let µk be concentrated on a σ−DCk set Ak, and give 0 mass to DCj sets for j < k.

Definition – Tangent planes Cover Ak by (Bj)j∈N, with Bj ∼ Φj(Rk) for Φj,ℓ = fj,ℓ − gj,ℓ,
with fj,ℓ, gj,ℓ : Rk → R convex.

Then Tx Ak exists if
• for all j such that x ∈ Bj , each fj,ℓ, gj,ℓ is differentiable,
• all ∇xΦj coincide, in which case Tx Ak := ∇xΦj(Rk).

By Zajíček, Tx Ak exists µk−almost everywhere.

Stays to show that D(x) = (Tx Ak)
⊥ for µk−a.e. point x ∈ Ω.
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How does it work: orthogonality

Let φ be convex with Jk(φ) = {x | dim ∂xφ ⩾ d− k} a smooth surface. Assume that for any
x ∈ Jk(φ), there holds ∂xφ = conv {g0(x), · · · , gd−k(x)} for continuous (gi)i.

Then

span ∂xφ := span {gi(x)− g0(x)}d−k
i=1 ⊥ Tx Jk(φ).

For any smooth curve γ ⊂ Jk(φ), there holds

φ(γt) ⩾ φ(γ0) + ⟨gi(γ0), γt − γ0⟩ ⩾ φ(γt) + ⟨g0(γt), γ0 − γt⟩+ ⟨gi(γ0), γt − γ0⟩ .

Therefore, dividing by t > 0,

0 ⩾
〈
gi(γ0)− g0(γt),

γt − γ0
t

〉
−→
t↘0

⟨gi(γ0)− g0(γ0), γ̇0⟩ .

Interchanging i and 0, we get gi(x)− g0(x) ⊥ Tx Jk(φ).
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Directions and open questions

• Ongoing work (and part of the motivation); edge cases where the tangent cone does not behave as
expected.

Open questions
• What can be said about the projection on Tanµ for fields that are induced by a map?
• Is there a similar decomposition with rectifiable pieces / what would be the correct cost?

Thank you for your attention!
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