Local characterization of tangent plans that are martingale plans

Averil Aussedat Post-doc at University of Pisa

November 19, 2025 NewOT Workshop, Orsay

Table of Contents

Centred measure fields

Centred measure fields

First notations

Let
$$T\Omega = \{(x, v)\}$$
, with $x \in \Omega = \mathbb{R}^d$, and $v \in T_x \Omega \sim \mathbb{R}^d$.

First notations

Let $T\Omega=\{(x,v)\}$, with $x\in\Omega=\mathbb{R}^d$, and $v\in T_x\,\Omega\sim\mathbb{R}^d$. Fix $\mu\in\mathscr{P}_2(\Omega)$, and denote

$$\mathscr{P}_2(\mathrm{T}\,\Omega)_{\mu} \coloneqq \{\xi \in \mathscr{P}_2(\mathrm{T}\,\Omega) \mid \pi_{x\#}\xi = \mu\}.$$

Any $\xi \in \mathscr{P}_2(T\Omega)_{\mu}$ can be disintegrated as $\xi = \xi_x \otimes \mu$, called "measure field" instead of "vector field".

First notations

Let $T\Omega = \{(x,v)\}$, with $x \in \Omega = \mathbb{R}^d$, and $v \in T_x \Omega \sim \mathbb{R}^d$. Fix $\mu \in \mathscr{P}_2(\Omega)$, and denote

$$\mathscr{P}_2(\mathrm{T}\,\Omega)_{\mu} \coloneqq \{\xi \in \mathscr{P}_2(\mathrm{T}\,\Omega) \mid \pi_{x\#}\xi = \mu\}.$$

Any $\xi \in \mathscr{P}_2(T\Omega)_{\mu}$ can be disintegrated as $\xi = \xi_x \otimes \mu$, called "measure field" instead of "vector field".

Definition – L^2_μ -like distance on $\mathscr{P}_2(T\Omega)_\mu$ For any $\xi, \zeta \in \mathscr{P}_2(T\Omega)_\mu$, let

$$W^2_{\mu}(\xi,\zeta) \coloneqq \int_{x \in \Omega} W^2(\xi_x,\zeta_x) d\mu(x).$$

First notations

Centred measure fields

Let $T\Omega = \{(x,v)\}$, with $x \in \Omega = \mathbb{R}^d$, and $v \in T_x \Omega \sim \mathbb{R}^d$. Fix $\mu \in \mathscr{P}_2(\Omega)$, and denote

$$\mathscr{P}_2(\mathrm{T}\,\Omega)_{\mu} \coloneqq \{\xi \in \mathscr{P}_2(\mathrm{T}\,\Omega) \mid \pi_{x\#}\xi = \mu\}.$$

Any $\xi \in \mathscr{P}_2(T\Omega)_\mu$ can be disintegrated as $\xi = \xi_x \otimes \mu$, called "measure field" instead of "vector field".

Definition – L^2_μ – like distance on $\mathscr{P}_2(T\Omega)_\mu$ For any $\xi, \zeta \in \mathscr{P}_2(T\Omega)_\mu$, let

$$W^2_{\mu}(\xi,\zeta) \coloneqq \int_{x \in \Omega} W^2(\xi_x,\zeta_x) d\mu(x).$$

 W_{μ} comes with its "scalar product"

$$\langle \xi, \zeta \rangle_{\mu} \coloneqq \frac{1}{2} \left[W_{\mu}^2(\xi, 0_{\mu}) + W_{\mu}^2(\zeta, 0_{\mu}) - W_{\mu}^2(\xi, \zeta) \right] = \int_{x \in \Omega} \sup_{\alpha_x \in \Gamma(\xi_x, \zeta_x)} \int_{(v, w)} \langle v, w \rangle \, d\alpha_x(v, w) d\mu(x).$$

Some literature on this pseudo-Hilbertian structure

• Introduced in [AGS05]¹ and [Gig08]² along with a scalar multiplication and a set-valued sum.

¹L. Ambrosio, N. Gigli, and G. Savaré, *Gradient Flows* (2005).

²N. Gigli, "On the geometry of the space of probability measures endowed with the quadratic optimal transport distance" (2008).

Some literature on this pseudo-Hilbertian structure

- Introduced in [AGS05]¹ and [Gig08]² along with a scalar multiplication and a set-valued sum.
- Appears for "generalized" subdifferentials in [AF14]³ and [Ber24]⁴, to define viscosity solutions.

¹L. Ambrosio, N. Gigli, and G. Savaré, *Gradient Flows* (2005).

²N. Gigli, "On the geometry of the space of probability measures endowed with the quadratic optimal transport distance" (2008).

³L. Ambrosio and J. Feng, "On a class of first order Hamilton–Jacobi equations in metric spaces" (2014).

⁴C. Bertucci, "Stochastic optimal transport and Hamilton–Jacobi–Bellman equations on the set of probability measures" (2024).

Some literature on this pseudo-Hilbertian structure

- Introduced in [AGS05]¹ and [Gig08]² along with a scalar multiplication and a set-valued sum.
- Appears for "generalized" subdifferentials in [AF14]³ and [Ber24]⁴, to define viscosity solutions.
- Appears in Measure Differential Equations ([Pic19]⁵, [Cam+21]⁶, [Sch25]⁷) and flows of dissipative measure fields ([CSS23a]⁸, [CSS23b]⁹), with aim to allow mass splitting.

- ¹L. Ambrosio, N. Gigli, and G. Savaré, *Gradient Flows* (2005).
- ²N. Gigli, "On the geometry of the space of probability measures endowed with the quadratic optimal transport distance" (2008).
- ³L. Ambrosio and J. Feng, "On a class of first order Hamilton–Jacobi equations in metric spaces" (2014).
- ⁴C. Bertucci, "Stochastic optimal transport and Hamilton–Jacobi–Bellman equations on the set of probability measures" (2024).
- ⁵B. Piccoli, "Measure Differential Equations" (2019).
- ⁶F. Camilli et al., "Superposition principle and schemes for Measure Differential Equations" (2021).
- ⁷A. Schichl, Non-linear degenerate parabolic flow equations and a finer differential structure on Wasserstein spaces (2025).
- ⁸G. Cavagnari, G. Savaré, and G. E. Sodini, A Lagrangian approach to totally dissipative evolutions in Wasserstein spaces (2023).
- ⁹G. Cavagnari, G. Savaré, and G. E. Sodini, "Dissipative probability vector fields and generation of evolution semigroups in Wasserstein spaces" (2023).

Some literature on this pseudo-Hilbertian structure

- Introduced in [AGS05]¹ and [Gig08]² along with a scalar multiplication and a set-valued sum.
- Appears for "generalized" subdifferentials in [AF14]³ and [Ber24]⁴, to define viscosity solutions.
- Appears in Measure Differential Equations ([Pic19]⁵, [Cam+21]⁶, [Sch25]⁷) and flows of dissipative measure fields ([CSS23a]⁸, [CSS23b]⁹), with aim to allow mass splitting.

Zalíček's theorem

- Recent work [LTD24]¹⁰ providing KKT conditions.
- ¹L. Ambrosio, N. Gigli, and G. Savaré, Gradient Flows (2005).
- ²N. Gigli, "On the geometry of the space of probability measures endowed with the quadratic optimal transport distance" (2008).
- ³L. Ambrosio and J. Feng, "On a class of first order Hamilton–Jacobi equations in metric spaces" (2014).
- ⁴C. Bertucci, "Stochastic optimal transport and Hamilton-Jacobi-Bellman equations on the set of probability measures" (2024).
- ⁵B. Piccoli, "Measure Differential Equations" (2019).
- ⁶F. Camilli et al., "Superposition principle and schemes for Measure Differential Equations" (2021).
- A. Schichl, Non-linear degenerate parabolic flow equations and a finer differential structure on Wasserstein spaces (2025).
- ⁸G. Cavagnari. G. Savaré, and G. E. Sodini, A Lagrangian approach to totally dissipative evolutions in Wasserstein spaces (2023).
- ⁹G. Cavagnari, G. Savaré, and G. E. Sodini, "Dissipative probability vector fields and generation of evolution semigroups in Wasserstein spaces" (2023).

¹⁰N. Lanzetti, A. Terpin, and F. Dörfler, Variational Analysis in the Wasserstein Space (2024).

Orthogonality

If
$$\xi=(id,f)_{\#}\mu$$
 for some $f\in L^2_{\mu}(\Omega;\mathbb{R}^d)$, then $\xi_x=\delta_{f(x)}$, so that

$$\langle \xi, \zeta \rangle_{\mu} = \int_{x \in \Omega} \int_{w} \langle f(x), w \rangle \, d\zeta_{x}(w) d\mu(x) = \langle f, \mathsf{Bary} \; (\zeta) \rangle_{L^{2}_{\mu}} \, .$$

Orthogonality

If $\xi=(id,f)_{\#}\mu$ for some $f\in L^2_{\mu}(\Omega;\mathbb{R}^d)$, then $\xi_x=\delta_{f(x)}$, so that

$$\langle \xi, \zeta \rangle_{\mu} = \int_{x \in \Omega} \int_{w} \langle f(x), w \rangle \, d\zeta_{x}(w) d\mu(x) = \langle f, \mathsf{Bary} \; (\zeta) \rangle_{L^{2}_{\mu}} \, .$$

Observation $\mathscr{P}_2(T\Omega)_{\mu}$ splits orthogonally into

- the set of ξ that are induced by a map,
- the set of ξ with barycenter 0, noted $\mathscr{P}_2(\operatorname{T}\Omega)^0_\mu.$

Bary $(\xi) = 0$ iff $(\pi_x, \pi_x + \pi_v)_{\#}\xi$ is a "martingale plan".

Orthogonality

If $\xi=(id,f)_{\sharp}\mu$ for some $f\in L^2_{\mu}(\Omega;\mathbb{R}^d)$, then $\xi_x=\delta_{f(x)}$, so that

$$\langle \xi, \zeta \rangle_{\mu} = \int_{x \in \Omega} \int_{w} \langle f(x), w \rangle \, d\zeta_{x}(w) d\mu(x) = \langle f, \mathsf{Bary} \; (\zeta) \rangle_{L^{2}_{\mu}} \, .$$

Observation $\mathscr{P}_2(T\Omega)_{\mu}$ splits orthogonally into

- the set of ξ that are induced by a map,
- the set of ξ with barycenter 0, noted $\mathscr{P}_2(T\Omega)^0_\mu$.

Bary $(\xi) = 0$ iff $(\pi_x, \pi_x + \pi_v)_{\#}\xi$ is a "martingale plan".

On $\mathscr{P}_2(\mathrm{T}\,\Omega)^0_\mu$, very strong property:

$$\langle \xi, \zeta \rangle_{\mu} = 0$$

if and only if $\langle \xi_x, \zeta_x \rangle_{\delta_x} = 0$ for $\mu-\text{a.e. } x.$

Orthogonality

If $\xi=(id,f)_{\#}\mu$ for some $f\in L^2_{\mu}(\Omega;\mathbb{R}^d)$, then $\xi_x=\delta_{f(x)}$, so that

$$\langle \xi, \zeta \rangle_{\mu} = \int_{x \in \Omega} \int_{w} \langle f(x), w \rangle \, d\zeta_{x}(w) d\mu(x) = \langle f, \mathsf{Bary} \, (\zeta) \rangle_{L^{2}_{\mu}} \, .$$

Observation $\mathscr{P}_2(T\Omega)_{\mu}$ splits orthogonally into

- ullet the set of ξ that are induced by a map,
- the set of ξ with barycenter 0, noted $\mathscr{P}_2(\operatorname{T}\Omega)^0_\mu.$

Bary $(\xi) = 0$ iff $(\pi_x, \pi_x + \pi_v)_{\#}\xi$ is a "martingale plan".

On $\mathscr{P}_2(\mathrm{T}\,\Omega)^0_\mu$, very strong property:

$$\langle \xi, \zeta \rangle_{\mu} = 0$$

if and only if $\langle \xi_x, \zeta_x \rangle_{\delta_x} = 0$ for $\mu-\text{a.e. } x.$

For centred fields, orthogonality is a local phenomenon.

Closed convex cone of centred fields

Theorem [Aus25]¹ Let $A \subset \mathscr{P}_2(T\Omega)^0_\mu$ be a W_μ -closed nonnegative cone, which is convex along interpolation through any plan respecting the fibers.

¹A. Aussedat, Local structure of centred tangent cones in the Wasserstein space (2025). [ArXiv preprint, same as in the rest of the talk]

Closed convex cone of centred fields

Theorem [Aus25]¹ Let $A \subset \mathscr{P}_2(T\Omega)^0_\mu$ be a W_μ -closed nonnegative cone, which is convex along interpolation through any plan respecting the fibers. Then there exists a measurable application D such that D(x) is a vector space, and

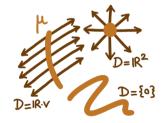
$$\xi \in A \qquad \Longleftrightarrow \qquad [\xi \text{ is centred and } v \in D(x) \text{ for } \xi - \text{almost any } (x,v).]$$

¹A. Aussedat, Local structure of centred tangent cones in the Wasserstein space (2025). [ArXiv preprint, same as in the rest of the talk]

Closed convex cone of centred fields

Theorem [Aus25]¹ Let $A \subset \mathscr{P}_2(T\Omega)^0_\mu$ be a W_μ -closed nonnegative cone, which is convex along interpolation through any plan respecting the fibers. Then there exists a measurable application D such that D(x) is a vector space, and

$$\xi \in A \qquad \Longleftrightarrow \qquad [\xi \text{ is centred and } v \in D(x) \text{ for } \xi - \text{almost any } (x,v).]$$



Centred measure fields

• Proved by passing to the orthogonal complement and exploiting the geometry induced by $\langle \cdot, \cdot \rangle_{\mu}$.

¹A. Aussedat, Local structure of centred tangent cones in the Wasserstein space (2025). [ArXiv preprint, same as in the rest of the talk]

Closed convex cone of centred fields

Theorem [Aus25] Let $A \subset \mathscr{P}_2(T\Omega)^0_\mu$ be a W_μ -closed nonnegative cone, which is convex along interpolation through any plan respecting the fibers. Then there exists a measurable application D such that D(x) is a vector space, and

$$\xi \in A \qquad \Longleftrightarrow \qquad [\xi \text{ is centred and } v \in D(x) \text{ for } \xi - \text{almost any } (x,v).]$$

Centred measure fields

 Proved by passing to the orthogonal complement and exploiting the geometry induced by $\langle \cdot, \cdot \rangle_{,,.}$

5/16

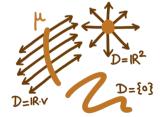
Starts with a "nonnegative cone". ends with a "two-sided cone".

¹A. Aussedat, Local structure of centred tangent cones in the Wasserstein space (2025). [ArXiv preprint, same as in the rest of the talk]

Closed convex cone of centred fields

Theorem [Aus25]¹ Let $A \subset \mathscr{P}_2(T\Omega)^0_\mu$ be a W_μ -closed nonnegative cone, which is convex along interpolation through any plan respecting the fibers. Then there exists a measurable application D such that D(x) is a vector space, and

$$\xi \in A \qquad \Longleftrightarrow \qquad [\xi \text{ is centred and } v \in D(x) \text{ for } \xi - \text{almost any } (x,v).]$$



- Proved by passing to the orthogonal complement and exploiting the geometry induced by $\langle\cdot,\cdot\rangle_{\mu}.$
- Starts with a "nonnegative cone", ends with a "two-sided cone".
- Proves convexity as measures.

¹A. Aussedat, Local structure of centred tangent cones in the Wasserstein space (2025). [ArXiv preprint, same as in the rest of the talk]

Table of Contents

Tangent measure fields

Centred tangent fields

 Tan_{μ} is the W_{μ} -closure of the measure Definition – Geometric tangent cone [Gig08]¹ fields of the form $(\pi_x, \lambda \pi_v)_{\#} \xi$, where $\lambda \geq 0$, and ξ induces a geodesic, i.e.

$$\xi = (\pi_x, \pi_y - \pi_x)_{\#}\eta$$
 for η optimal plan between μ and some $\nu \in \mathscr{P}_2(\Omega)$.

¹N. Gigli, "On the geometry of the space of probability measures endowed with the quadratic optimal transport distance" (2008).

Centred tangent fields

Definition – Geometric tangent cone [Gig08]¹ Tan_{μ} is the W_{μ} -closure of the measure fields of the form $(\pi_x, \lambda \pi_v)_{\#}\xi$, where $\lambda \geq 0$, and ξ induces a geodesic, i.e.

$$\xi=(\pi_x,\pi_y-\pi_x)_{\#}\eta\qquad\text{for η optimal plan between μ and some $\nu\in\mathscr{P}_2(\Omega)$.}$$

Denote $\operatorname{Tan}_{\mu}^{0} = \operatorname{Tan}_{\mu} \cap \mathscr{P}_{2}(\operatorname{T}\Omega)_{\mu}^{0}$ the set of centred tangent measure fields.

¹N. Gigli, "On the geometry of the space of probability measures endowed with the quadratic optimal transport distance" (2008).

Centred tangent fields

Definition – Geometric tangent cone [Gig08]¹ Tan_u is the W_{μ} -closure of the measure fields of the form $(\pi_x, \lambda \pi_v)_{\#} \xi$, where $\lambda \geq 0$, and ξ induces a geodesic, i.e.

$$\xi = (\pi_x, \pi_y - \pi_x)_{\sharp} \eta$$
 for η optimal plan between μ and some $\nu \in \mathscr{P}_2(\Omega)$.

Denote $\operatorname{Tan}_{\mu}^{0} = \operatorname{Tan}_{\mu} \cap \mathscr{P}_{2}(\operatorname{T}\Omega)_{\mu}^{0}$ the set of centred tangent measure fields.

By Proposition 4.25 of the same reference, $\operatorname{Tan}_{\mu}^{0}$ is a closed convex cone of centred fields.

¹N. Gigli, "On the geometry of the space of probability measures endowed with the quadratic optimal transport distance" (2008).

Local characterization Averil Aussedat November 19, 2025

Centred tangent fields

Definition – Geometric tangent cone [Gig08]¹ Tan_u is the W_{μ} -closure of the measure fields of the form $(\pi_x, \lambda \pi_v)_{\#} \xi$, where $\lambda \geq 0$, and ξ induces a geodesic, i.e.

Zajíček's theorem

$$\xi = (\pi_x, \pi_y - \pi_x)_{\sharp} \eta$$
 for η optimal plan between μ and some $\nu \in \mathscr{P}_2(\Omega)$.

Denote $\operatorname{Tan}_{\mu}^{0} = \operatorname{Tan}_{\mu} \cap \mathscr{P}_{2}(\mathrm{T}\Omega)_{\mu}^{0}$ the set of centred tangent measure fields.

By Proposition 4.25 of the same reference, $\operatorname{Tan}_{\mu}^{0}$ is a closed convex cone of centred fields.

Corollary Any $\mu \in \mathscr{P}_2(\Omega)$ admits D such that $\xi \in \mathbf{Tan}^0_\mu$ iff ξ is centred and $\xi(\operatorname{graph} D) = 1$.

¹N. Gigli, "On the geometry of the space of probability measures endowed with the quadratic optimal transport distance" (2008).

Local characterization Averil Aussedat November 19, 2025

Examples

Example 1. If $\mu = \delta_0$, any plan is optimal, so that $\mathbf{Tan}_{\mu}^0 = \mathscr{P}_2(\mathrm{T}\,\Omega)_{\mu}^0$, and $D \equiv \mathbb{R}^d$.

Examples

Example 1. If $\mu = \delta_0$, any plan is optimal, so that $\operatorname{Tan}_{\mu}^0 = \mathscr{P}_2(\operatorname{T}\Omega)_{\mu}^0$, and $D \equiv \mathbb{R}^d$.

Example 2. If $\mu \ll \mathcal{L}$, any optimal plan is induced by a map, so $\mathbf{Tan}_{\mu}^{0} = \{0_{\mu}\}$ and $D \equiv \{0\}$.

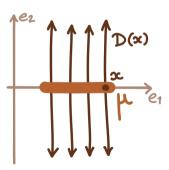
Zalíček's theorem

Examples

Example 1. If $\mu = \delta_0$, any plan is optimal, so that $\operatorname{Tan}_{\mu}^0 = \mathscr{P}_2(\operatorname{T}\Omega)_{\mu}^0$, and $D \equiv \mathbb{R}^d$.

Example 2. If $\mu \ll \mathcal{L}$, any optimal plan is induced by a map, so $\mathbf{Tan}_{\mu}^{0} = \{0_{\mu}\}$ and $D \equiv \{0\}$.

Example 3. If $\mu = (id, 0)_{\#}\mathcal{L}_{[0,1]}$ in dimension 2, then $D(x) \equiv \text{span}\{e_2\}$.



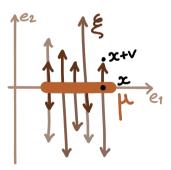
Examples

Example 1. If $\mu = \delta_0$, any plan is optimal, so that $\operatorname{Tan}_{\mu}^0 = \mathscr{P}_2(\operatorname{T}\Omega)_{\mu}^0$, and $D \equiv \mathbb{R}^d$.

Example 2. If $\mu \ll \mathcal{L}$, any optimal plan is induced by a map, so $\mathbf{Tan}_{\mu}^{0} = \{0_{\mu}\}$ and $D \equiv \{0\}$.

Example 3. If $\mu = (id, 0)_{\#}\mathcal{L}_{[0,1]}$ in dimension 2, then $D(x) \equiv \text{span}\{e_2\}$.

Indeed, any ξ concentrated on graph D induces a geodesic.



Examples

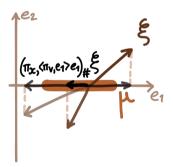
Example 1. If $\mu = \delta_0$, any plan is optimal, so that $\mathbf{Tan}^0_{\mu} = \mathscr{P}_2(\mathrm{T}\,\Omega)^0_{\mu}$, and $D \equiv \mathbb{R}^d$.

Example 2. If $\mu \ll \mathcal{L}$, any optimal plan is induced by a map, so $\mathbf{Tan}_{\mu}^{0} = \{0_{\mu}\}$ and $D \equiv \{0\}$.

Example 3. If $\mu = (id, 0)_{\#}\mathcal{L}_{[0,1]}$ in dimension 2, then $D(x) \equiv \text{span}\{e_2\}$.

Indeed, any ξ concentrated on graph D induces a geodesic.

Conversely, if ξ is centred and optimal, then so is $(\pi_x, \langle \pi_v, e_1 \rangle e_1)_{\#} \xi$.



Examples

Example 1. If $\mu = \delta_0$, any plan is optimal, so that $\operatorname{Tan}_{\mu}^0 = \mathscr{P}_2(\operatorname{T}\Omega)_{\mu}^0$, and $D \equiv \mathbb{R}^d$.

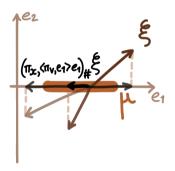
Example 2. If $\mu \ll \mathcal{L}$, any optimal plan is induced by a map, so $\mathbf{Tan}_{\mu}^{0} = \{0_{\mu}\}$ and $D \equiv \{0\}$.

Example 3. If $\mu = (id, 0)_{\#}\mathcal{L}_{[0,1]}$ in dimension 2, then $D(x) \equiv \text{span}\{e_2\}$.

Indeed, any ξ concentrated on graph D induces a geodesic.

Conversely, if ξ is centred and optimal, then so is $(\pi_x, \langle \pi_v, e_1 \rangle e_1)_{\sharp} \xi$. Indeed, for $(x_i, v_i)_{i=1}^N \subset \operatorname{supp} \xi$,

$$\sum_{i=1}^{N} \langle x_i - x_{i-1}, x_i + v_i \rangle \geqslant 0.$$



Examples

Example 1. If $\mu = \delta_0$, any plan is optimal, so that $\operatorname{Tan}_{\mu}^0 = \mathscr{P}_2(\operatorname{T}\Omega)_{\mu}^0$, and $D \equiv \mathbb{R}^d$.

Example 2. If $\mu \ll \mathcal{L}$, any optimal plan is induced by a map, so $\mathbf{Tan}_{\mu}^{0} = \{0_{\mu}\}$ and $D \equiv \{0\}$.

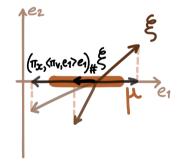
Example 3. If $\mu = (id, 0)_{\#}\mathcal{L}_{[0,1]}$ in dimension 2, then $D(x) \equiv \text{span}\{e_2\}$.

Indeed, any ξ concentrated on graph D induces a geodesic.

Conversely, if ξ is centred and optimal, then so is $(\pi_x, \langle \pi_v, e_1 \rangle e_1)_{\sharp} \xi$. Indeed, for $(x_i, v_i)_{i=1}^N \subset \operatorname{supp} \xi$,

$$\sum_{i=1}^{N} \langle x_i - x_{i-1}, x_i + v_i \rangle \geqslant 0.$$

 $\simeq 1$ D optimal plan from $\mathcal{L}_{[0,1]}$, hence induced by a map, hence 0, so $v \perp e_1 \xi$ -a.e.. Up to details, passes to \mathbf{Tan}_u^0 .



Lott's result

Theorem 1.1 of $[Lot16]^1$ If

- \mathcal{M} is a smooth submanifold of dimension k,
- $\mu \ll \mathcal{H}^k \sqcup \mathcal{M}$, with \mathcal{H}^k the Hausdorff measure,

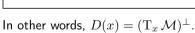
¹J. Lott, "On tangent cones in Wasserstein space" (2016).

Lott's result

Theorem 1.1 of [Lot16]¹

- \mathcal{M} is a smooth submanifold of dimension k.
- $\mu \ll \mathcal{H}^k \, \sqcup \, \mathcal{M}$, with \mathcal{H}^k the Hausdorff measure,

then $\xi \in \mathbf{Tan}_{\mu}^{0}$ if and only if (ξ is centred and) $v \perp T_x \mathcal{M}$ ξ – almost everywhere.



¹J. Lott, "On tangent cones in Wasserstein space" (2016).

Table of Contents

Zajíček's theorem

Zajíček's theorem

Statement

A set $A \subset \mathbb{R}^d$ is DC_k (Difference of Convex of dim k) if up to permuting the axes, Definition

Zajíček's theorem

$$A = \{(x_1, \dots, x_k, \Phi(x_1, \dots, x_k)) \mid \Phi : \mathbb{R}^k \to \mathbb{R}^{d-k}, \text{ with each } \Phi_i = \text{convex} - \text{convex} \}.$$

Centred measure fields

Statement

A set $A \subset \mathbb{R}^d$ is DC_k (Difference of Convex of dim k) if up to permuting the axes, **Definition**

Zajíček's theorem

$$A = \left\{ (x_1, \cdots, x_k, \Phi(x_1, \cdots, x_k)) \ \middle| \ \Phi : \mathbb{R}^k \to \mathbb{R}^{d-k}, \text{ with each } \Phi_i = \mathsf{convex} - \mathsf{convex} \right\}.$$

A set A is σ -DC_k if is can be covered by countably many DC_k sets.

Statement

Centred measure fields

Definition A set $A \subset \mathbb{R}^d$ is DC_k (Difference of Convex of dim k) if up to permuting the axes,

$$A = \left\{ (x_1, \cdots, x_k, \Phi(x_1, \cdots, x_k)) \ \middle| \ \Phi : \mathbb{R}^k \to \mathbb{R}^{d-k}, \text{ with each } \Phi_i = \mathsf{convex} - \mathsf{convex} \right\}.$$

A set A is $\sigma - DC_k$ if is can be covered by countably many DC_k sets.

Given
$$\varphi: \mathbb{R}^d \to \mathbb{R}$$
 convex, let $J_k(\varphi) := \{x \in \mathbb{R}^d \mid \dim \partial_x \varphi \geqslant d - k\}.$

Averil Aussedat Local characterization November 19, 2025

¹L. Zajíček, "On the differentiation of convex functions in finite and infinite dimensional spaces" (1979). See also G. Alberti, "On the structure of singular sets of convex functions" (1994).

Statement

Centred measure fields

Definition A set $A \subset \mathbb{R}^d$ is DC_k (Difference of Convex of dim k) if up to permuting the axes,

$$A = \left\{ (x_1, \cdots, x_k, \Phi(x_1, \cdots, x_k)) \ \middle| \ \Phi : \mathbb{R}^k \to \mathbb{R}^{d-k}, \text{ with each } \Phi_i = \mathsf{convex} - \mathsf{convex} \right\}.$$

A set A is σ -DC_k if is can be covered by countably many DC_k sets.

Given $\varphi: \mathbb{R}^d \to \mathbb{R}$ convex, let $J_k(\varphi) := \{x \in \mathbb{R}^d \mid \dim \partial_x \varphi \geqslant d - k\}.$

Theorem 1 of [Zaj79]¹ If $\varphi : \mathbb{R}^d \to \mathbb{R}$ is convex, then each $J_k(\varphi)$ is $\sigma - \mathsf{DC_k}$. Conversely, if $A \subset \mathbb{R}^d$ is $\sigma - \mathsf{DC_k}$, there exists a convex $\varphi : \mathbb{R}^d \to \mathbb{R}$ such that $A \subset J_k(\varphi)$.

¹L. Zajíček, "On the differentiation of convex functions in finite and infinite dimensional spaces" (1979). See also G. Alberti, "On the structure of singular sets of convex functions" (1994).

Zajíček's theorem

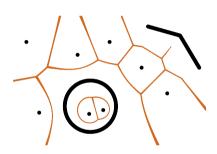
10 / 16

Centred measure fields

Let $S \subset \mathbb{R}^d$ be closed, and consider

$$T \coloneqq \left\{ x \in \mathbb{R}^d \mid \operatorname{proj}_S(x) \text{ has more than one element} \right\}.$$

Then T is $\sigma - DC_{d-1}$.



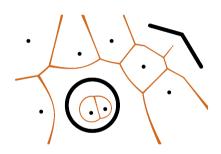
An application

Let $S \subset \mathbb{R}^d$ be closed, and consider

$$T \coloneqq \left\{ x \in \mathbb{R}^d \mid \operatorname{proj}_S(x) \text{ has more than one element} \right\}.$$

Then T is σ -DC_{d-1}. Indeed, consider

$$\varphi(x) \coloneqq \min_{y \in S} |x-y|^2 = |x|^2 + \min_{y \in S} -2 \, \langle x,y \rangle + |y|^2.$$



Zajíček's theorem

An application

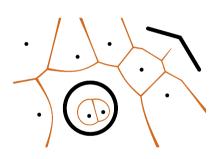
Let $S \subset \mathbb{R}^d$ be closed, and consider

$$T \coloneqq \left\{ x \in \mathbb{R}^d \mid \operatorname{proj}_S(x) \text{ has more than one element} \right\}.$$

Then T is σ -DC_{d-1}. Indeed, consider

$$\varphi(x) \coloneqq \min_{y \in S} |x-y|^2 = |x|^2 + \min_{y \in S} -2 \, \langle x,y \rangle + |y|^2.$$

Then φ is semiconcave and $J_{d-1}(\varphi) = T$. By Zajíček, T is $\sigma - \mathsf{DC}_{\mathsf{d-1}}$.



Zajíček's theorem

An application

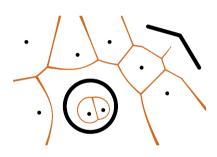
Let $S \subset \mathbb{R}^d$ be closed, and consider

$$T \coloneqq \left\{ x \in \mathbb{R}^d \mid \operatorname{proj}_S(x) \text{ has more than one element} \right\}.$$

Then T is σ -DC_{d-1}. Indeed, consider

$$\varphi(x) \coloneqq \min_{y \in S} |x-y|^2 = |x|^2 + \min_{y \in S} -2 \, \langle x,y \rangle + |y|^2.$$

Then φ is semiconcave and $J_{d-1}(\varphi) = T$. By Zajíček, T is $\sigma - DC_{d-1}$.



The set on which there is a decision to make is $\sigma - DC_{d-1}$.

Zajíček's theorem

Centred measure field

Tangent measure fields

Zajíček's theoren

Decomposition in the general case

Statement

Theorem Let $\mu \in \mathscr{P}_2(\Omega)$.

Statement

Let $\mu \in \mathscr{P}_2(\Omega)$. There exists a unique decomposition $\mu = \sum_{k=0}^d \mu_k$ in mutually singular measures such that

Statement

Theorem Let $\mu \in \mathscr{P}_2(\Omega)$. There exists a unique decomposition $\mu = \sum_{k=0}^d \mu_k$ in mutually singular measures such that

• μ_k is concentrated on a σ -DC_k set A_k , and gives 0 mass to DC_j sets for j < k;

Statement

Let $\mu \in \mathscr{P}_2(\Omega)$. There exists a unique decomposition $\mu = \sum_{k=0}^d \mu_k$ in mutually singular measures such that

Zalíček's theorem

- μ_k is concentrated on a σ -DC_k set A_k , and gives 0 mass to DC_i sets for j < k;
- the application D characterizing \mathbf{Tan}_{μ}^{0} is given by $D(x) = (T_{x} A_{k})^{\perp}$ for μ_{k} —a.e. $x \in \Omega$.

Centred measure fields

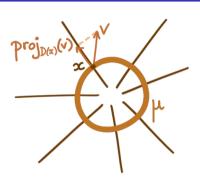
Let $\mu \in \mathscr{P}_2(\Omega)$. There exists a unique decomposition $\mu = \sum_{k=0}^d \mu_k$ in mutually singular measures such that

- μ_k is concentrated on a σ -DC_k set A_k , and gives 0 mass to DC_i sets for j < k;
- the application D characterizing \mathbf{Tan}_{μ}^{0} is given by $D(x) = (T_{x} A_{k})^{\perp}$ for μ_{k} —a.e. $x \in \Omega$.

Explicitly, $\xi \in \mathbf{Tan}_{\mu}^{0}$ if and only if ξ is (centred and) concentrated on the normal spaces to each A_{k} .

Centred measure fields

For each x, denote $\operatorname{proj}_{D(x)}:\mathbb{R}^d\to\mathbb{R}^d$ the projection over D(x).



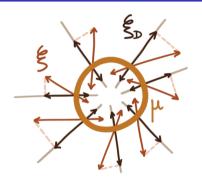
Projection on ${f Tan}_{\mu}^{0}$

For each x, denote $\operatorname{proj}_{D(x)}: \mathbb{R}^d \to \mathbb{R}^d$ the projection over D(x).

Corollary For any $\xi \in \mathscr{P}_2(T\Omega)^0_\mu$, the measure field

$$\xi_D \coloneqq (\pi_x, \mathsf{proj}_{D(x)}(\pi_v))_{\#} \xi$$

is the unique minimizer of $W_{\mu}(\zeta,\xi)$ over $\zeta\in\mathbf{Tan}_{\mu}^{0}$.



Zalíček's theorem

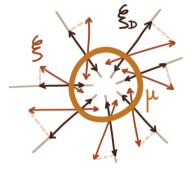
Projection on ${f Tan}_{\mu}^0$

For each x, denote $\operatorname{proj}_{D(x)}: \mathbb{R}^d \to \mathbb{R}^d$ the projection over D(x).

Corollary For any $\xi \in \mathscr{P}_2(T\Omega)^0_u$, the measure field

$$\xi_D\coloneqq (\pi_x,\operatorname{proj}_{D(x)}(\pi_v))_{\sharp}\xi$$

is the unique minimizer of $W_{\mu}(\zeta,\xi)$ over $\zeta\in\mathbf{Tan}_{\mu}^{0}$.



By construction, $\xi_D \in \mathbf{Tan}_{\mu}^0$. Conversely, let $\zeta \in \mathbf{Tan}_{\mu}^0$, and α realize $W_{\mu}(\zeta, \xi)$. Then

$$W^2_{\mu}(\zeta,\xi) = \int |v-w|^2 d\alpha \geqslant \int |\mathrm{proj}_{D(x)}(w) - w|^2 d\alpha \geqslant W^2_{\mu}(\xi_D,\xi).$$

How does it work: the measures $(\mu_k)_k$

Natural candidates: $\mu_k = \mu \sqcup \{\dim D = d - k\}.$

Natural candidates: $\mu_k = \mu \sqcup \{\dim D = d - k\}$. How to get concentration on a σ -DC_k set?

Centred measure fields

Natural candidates: $\mu_k = \mu L \{ \dim D = d - k \}$. How to get concentration on a σ -DC_k set?

Zalíček's theorem

 $\operatorname{Tan}_{\mu_k}^0$ coincides with the "restriction" of $\operatorname{Tan}_{\mu}^0$ to $\{\dim D = d - k\}$. Lemma

How does it work: the measures $(\mu_k)_k$

Natural candidates: $\mu_k = \mu \sqcup \{\dim D = d - k\}$. How to get concentration on a $\sigma - \mathsf{DC}_k$ set?

Lemma $\operatorname{Tan}_{\mu_k}^0$ coincides with the "restriction" of $\operatorname{Tan}_{\mu}^0$ to $\{\dim D = d - k\}$.

Now,

• get $\xi_k \in \mathbf{Tan}_{\mu_k}^0$ splitting mass in d-k directions.

How does it work: the measures $(\mu_k)_k$

Natural candidates: $\mu_k = \mu L \{ \dim D = d - k \}$. How to get concentration on a σ -DC_k set?

 $\operatorname{Tan}_{u}^{0}$ coincides with the "restriction" of $\operatorname{Tan}_{u}^{0}$ to $\{\dim D = d - k\}$. Lemma

Now.

- get $\xi_k \in \mathbf{Tan}_{\mu_k}^0$ splitting mass in d-k directions.
- Approximate by an optimal plan, which splits mass in d-k directions on a set of large μ_k -mass.

Zalíček's theorem

Averil Aussedat

How does it work: the measures $(\mu_k)_k$

Natural candidates: $\mu_k = \mu \sqcup \{\dim D = d - k\}$. How to get concentration on a $\sigma - \mathsf{DC}_k$ set?

 $\operatorname{Tan}_{u}^{0}$ coincides with the "restriction" of $\operatorname{Tan}_{u}^{0}$ to $\{\dim D = d - k\}$. Lemma

Now.

- get $\xi_k \in \mathbf{Tan}_{\mu_k}^0$ splitting mass in d-k directions.
- Approximate by an optimal plan, which splits mass in d-k directions on a set of large μ_k -mass.

Zalíček's theorem

Hence some Kantorovich potential must have a subdifferential of dimension d-k.

How does it work: the measures $(\mu_k)_k$

Natural candidates: $\mu_k = \mu L \{ \dim D = d - k \}$. How to get concentration on a σ -DC_k set?

 $\operatorname{Tan}_{u}^{0}$ coincides with the "restriction" of $\operatorname{Tan}_{u}^{0}$ to $\{\dim D = d - k\}$. Lemma

Now.

- get $\xi_k \in \mathbf{Tan}_{\mu_k}^0$ splitting mass in d-k directions.
- Approximate by an optimal plan, which splits mass in d-k directions on a set of large μ_k -mass.

Zalíček's theorem

Hence some Kantorovich potential must have a subdifferential of dimension d-k.

Kantorovich potentials are semiconvex, so by Zajíček, μ_k is concentrated on a σ -DC_k set A_k .

Zalíček's theorem

14 / 16

Centred measure fields

How does it work: the tangent planes $T_x A_k$

Let μ_k be concentrated on a σ -DC_k set A_k , and give 0 mass to DC_j sets for j < k.

Let μ_k be concentrated on a σ -DC_k set A_k , and give 0 mass to DC_j sets for j < k.

Definition – Tangent planes Cover A_k by $(B_j)_{j\in\mathbb{N}}$, with $B_j\sim\Phi_j(\mathbb{R}^k)$ for $\Phi_{j,\ell}=f_{j,\ell}-g_{j,\ell}$, with $f_{j,\ell},g_{j,\ell}:\mathbb{R}^k\to\mathbb{R}$ convex.

How does it work: the tangent planes $T_x A_k$

Let μ_k be concentrated on a σ -DC_k set A_k , and give 0 mass to DC_j sets for j < k.

Definition – Tangent planes Cover A_k by $(B_j)_{j\in\mathbb{N}}$, with $B_j \sim \Phi_j(\mathbb{R}^k)$ for $\Phi_{j,\ell} = f_{j,\ell} - g_{j,\ell}$, with $f_{j,\ell}, g_{j,\ell} : \mathbb{R}^k \to \mathbb{R}$ convex. Then $T_x A_k$ exists if

• for all j such that $x \in B_i$, each $f_{i,\ell}$, $g_{i,\ell}$ is differentiable,

How does it work: the tangent planes $T_x A_k$

Let μ_k be concentrated on a σ -DC_k set A_k , and give 0 mass to DC_j sets for j < k.

Definition – Tangent planes Cover A_k by $(B_j)_{j\in\mathbb{N}}$, with $B_j \sim \Phi_j(\mathbb{R}^k)$ for $\Phi_{j,\ell} = f_{j,\ell} - g_{j,\ell}$, with $f_{j,\ell}, g_{j,\ell} : \mathbb{R}^k \to \mathbb{R}$ convex. Then $T_x A_k$ exists if

Zalíček's theorem

- for all j such that $x \in B_j$, each $f_{j,\ell}$, $g_{j,\ell}$ is differentiable,
- all $\nabla_x \Phi_j$ coincide, in which case $T_x A_k := \nabla_x \Phi_j(\mathbb{R}^k)$.

How does it work: the tangent planes $T_x A_k$

Let μ_k be concentrated on a σ -DC_k set A_k , and give 0 mass to DC_i sets for i < k.

Definition – Tangent planes Cover A_k by $(B_i)_{i\in\mathbb{N}}$, with $B_i \sim \Phi_i(\mathbb{R}^k)$ for $\Phi_{i,\ell} = f_{i,\ell} - g_{i,\ell}$. with $f_{i,\ell}, g_{i,\ell}: \mathbb{R}^k \to \mathbb{R}$ convex. Then $T_x A_k$ exists if

- for all j such that $x \in B_i$, each $f_{i,\ell}$, $g_{i,\ell}$ is differentiable,
- all $\nabla_x \Phi_i$ coincide, in which case $T_x A_k := \nabla_x \Phi_i(\mathbb{R}^k)$.

By Zajíček, $T_x A_k$ exists μ_k -almost everywhere.

How does it work: the tangent planes $T_x A_k$

Let μ_k be concentrated on a σ -DC_k set A_k , and give 0 mass to DC_j sets for j < k.

Definition – Tangent planes Cover A_k by $(B_j)_{j\in\mathbb{N}}$, with $B_j \sim \Phi_j(\mathbb{R}^k)$ for $\Phi_{j,\ell} = f_{j,\ell} - g_{j,\ell}$, with $f_{j,\ell}, g_{j,\ell} : \mathbb{R}^k \to \mathbb{R}$ convex. Then $T_x A_k$ exists if

- for all j such that $x \in B_j$, each $f_{j,\ell}$, $g_{j,\ell}$ is differentiable,
- all $\nabla_x \Phi_i$ coincide, in which case $T_x A_k := \nabla_x \Phi_i(\mathbb{R}^k)$.

By Zajíček, $T_x A_k$ exists μ_k -almost everywhere.

Stays to show that $D(x) = (T_x A_k)^{\perp}$ for μ_k -a.e. point $x \in \Omega$.

How does it work: orthogonality

Let φ be convex with $J_k(\varphi) = \{x \mid \dim \partial_x \varphi \geqslant d - k\}$ a smooth surface. Assume that for any $x \in J_k(\varphi)$, there holds $\partial_x \varphi = \text{conv} \{g_0(x), \cdots, g_{d-k}(x)\}$ for continuous $(g_i)_i$.

Zalíček's theorem

How does it work: orthogonality

Let φ be convex with $J_k(\varphi) = \{x \mid \dim \partial_x \varphi \geqslant d - k\}$ a smooth surface. Assume that for any $x \in J_k(\varphi)$, there holds $\partial_x \varphi = \text{conv} \{g_0(x), \cdots, g_{d-k}(x)\}$ for continuous $(g_i)_i$. Then

Zalíček's theorem

$$\operatorname{span} \partial_x \varphi \coloneqq \operatorname{span} \ \{g_i(x) - g_0(x)\}_{i=1}^{d-k} \quad \bot \quad \operatorname{T}_x J_k(\varphi).$$

How does it work: orthogonality

Let φ be convex with $J_k(\varphi) = \{x \mid \dim \partial_x \varphi \geqslant d - k\}$ a smooth surface. Assume that for any $x \in J_k(\varphi)$, there holds $\partial_x \varphi = \text{conv} \{g_0(x), \cdots, g_{d-k}(x)\}$ for continuous $(g_i)_i$. Then

Zalíček's theorem

$$\operatorname{span} \partial_x \varphi \coloneqq \operatorname{span} \ \{g_i(x) - g_0(x)\}_{i=1}^{d-k} \quad \bot \quad \operatorname{T}_x J_k(\varphi).$$

For any smooth curve $\gamma \subset J_k(\varphi)$, there holds

$$\varphi(\gamma_t) \geqslant \varphi(\gamma_0) + \langle g_i(\gamma_0), \gamma_t - \gamma_0 \rangle$$

How does it work: orthogonality

Let φ be convex with $J_k(\varphi) = \{x \mid \dim \partial_x \varphi \geqslant d - k\}$ a smooth surface. Assume that for any $x \in J_k(\varphi)$, there holds $\partial_x \varphi = \text{conv} \{g_0(x), \cdots, g_{d-k}(x)\}$ for continuous $(g_i)_i$. Then

$$\operatorname{span} \partial_x \varphi \coloneqq \operatorname{span} \ \{g_i(x) - g_0(x)\}_{i=1}^{d-k} \quad \bot \quad \operatorname{T}_x J_k(\varphi).$$

For any smooth curve $\gamma \subset J_k(\varphi)$, there holds

$$\varphi(\gamma_t) \geqslant \varphi(\gamma_0) + \langle g_i(\gamma_0), \gamma_t - \gamma_0 \rangle \geqslant \varphi(\gamma_t) + \langle g_0(\gamma_t), \gamma_0 - \gamma_t \rangle + \langle g_i(\gamma_0), \gamma_t - \gamma_0 \rangle.$$

How does it work: orthogonality

Let φ be convex with $J_k(\varphi) = \{x \mid \dim \partial_x \varphi \geqslant d - k\}$ a smooth surface. Assume that for any $x \in J_k(\varphi)$, there holds $\partial_x \varphi = \text{conv} \{q_0(x), \cdots, q_{d-k}(x)\}$ for continuous $(q_i)_i$. Then

Zalíček's theorem

$$\operatorname{span} \partial_x \varphi \coloneqq \operatorname{span} \left\{ g_i(x) - g_0(x) \right\}_{i=1}^{d-k} \quad \bot \quad \operatorname{T}_x J_k(\varphi).$$

For any smooth curve $\gamma \subset J_k(\varphi)$, there holds

$$\varphi(\gamma_t) \geqslant \varphi(\gamma_0) + \langle g_i(\gamma_0), \gamma_t - \gamma_0 \rangle \geqslant \varphi(\gamma_t) + \langle g_0(\gamma_t), \gamma_0 - \gamma_t \rangle + \langle g_i(\gamma_0), \gamma_t - \gamma_0 \rangle.$$

Therefore, dividing by t > 0,

$$0 \geqslant \left\langle g_i(\gamma_0) - g_0(\gamma_t), \frac{\gamma_t - \gamma_0}{t} \right\rangle$$

How does it work: orthogonality

Let φ be convex with $J_k(\varphi) = \{x \mid \dim \partial_x \varphi \geqslant d - k\}$ a smooth surface. Assume that for any $x \in J_k(\varphi)$, there holds $\partial_x \varphi = \text{conv} \{q_0(x), \cdots, q_{d-k}(x)\}$ for continuous $(q_i)_i$. Then

Zalíček's theorem

$$\operatorname{span} \partial_x \varphi \coloneqq \operatorname{span} \left\{ g_i(x) - g_0(x) \right\}_{i=1}^{d-k} \quad \bot \quad \operatorname{T}_x J_k(\varphi).$$

For any smooth curve $\gamma \subset J_k(\varphi)$, there holds

$$\varphi(\gamma_t) \geqslant \varphi(\gamma_0) + \langle g_i(\gamma_0), \gamma_t - \gamma_0 \rangle \geqslant \varphi(\gamma_t) + \langle g_0(\gamma_t), \gamma_0 - \gamma_t \rangle + \langle g_i(\gamma_0), \gamma_t - \gamma_0 \rangle.$$

Therefore, dividing by t > 0,

$$0 \geqslant \left\langle g_i(\gamma_0) - g_0(\gamma_t), \frac{\gamma_t - \gamma_0}{t} \right\rangle \xrightarrow[t \to 0]{} \left\langle g_i(\gamma_0) - g_0(\gamma_0), \dot{\gamma}_0 \right\rangle.$$

How does it work: orthogonality

Let φ be convex with $J_k(\varphi) = \{x \mid \dim \partial_x \varphi \geqslant d - k\}$ a smooth surface. Assume that for any $x \in J_k(\varphi)$, there holds $\partial_x \varphi = \text{conv} \{q_0(x), \cdots, q_{d-k}(x)\}$ for continuous $(q_i)_i$. Then

$$\operatorname{span} \partial_x \varphi \coloneqq \operatorname{span} \left\{ g_i(x) - g_0(x) \right\}_{i=1}^{d-k} \quad \bot \quad \operatorname{T}_x J_k(\varphi).$$

For any smooth curve $\gamma \subset J_k(\varphi)$, there holds

$$\varphi(\gamma_t) \geqslant \varphi(\gamma_0) + \langle g_i(\gamma_0), \gamma_t - \gamma_0 \rangle \geqslant \varphi(\gamma_t) + \langle g_0(\gamma_t), \gamma_0 - \gamma_t \rangle + \langle g_i(\gamma_0), \gamma_t - \gamma_0 \rangle.$$

Therefore, dividing by t > 0,

$$0 \geqslant \left\langle g_i(\gamma_0) - g_0(\gamma_t), \frac{\gamma_t - \gamma_0}{t} \right\rangle \xrightarrow[t \to 0]{} \left\langle g_i(\gamma_0) - g_0(\gamma_0), \dot{\gamma}_0 \right\rangle.$$

Interchanging i and 0, we get $q_i(x) - q_0(x) \perp T_x J_k(\varphi)$.

Directions and open questions

Centred measure fields

• Ongoing work (and part of the motivation); edge cases where the tangent cone does not behave as expected.

Directions and open questions

• Ongoing work (and part of the motivation); edge cases where the tangent cone does not behave as expected.

Open questions

Centred measure fields

• What can be said about the projection on Tan_{μ} for fields that are induced by a map?

Averil Aussedat Local characterization November 19, 2025

Directions and open questions

• Ongoing work (and part of the motivation); edge cases where the tangent cone does not behave as expected.

Open questions

Centred measure fields

- ullet What can be said about the projection on ${f Tan}_\mu$ for fields that are induced by a map?
- Is there a similar decomposition with rectifiable pieces / what would be the correct cost?

Averil Aussedat Local characterization November 19, 2025

Directions and open questions

 Ongoing work (and part of the motivation); edge cases where the tangent cone does not behave as expected.

Open questions

- What can be said about the projection on \mathbf{Tan}_{μ} for fields that are induced by a map?
- Is there a similar decomposition with rectifiable pieces / what would be the correct cost?

Thank you for your attention!

Averil Aussedat Local characterization November 19, 2025