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Let TQ = {(z,v)}, with x € Q =R9, and v € T, Q ~ R%. Fix u € #5(9Q), and denote
DTV ={§ € P2(TQ) | maul = p}.
Any £ € Z5(TQ), can be disintegrated as { = &, ® p, called “measure field” instead of “vector field".

Definition — L? —like distance on &5(TQ), Forany &,¢ € P5(TQ),, let

wie.o = | Ve ),

W, comes with its “scalar product”

1
60, = 5 WHE) T WG0) ~WHE) = [ s [ () do widu(o)

Averil Aussedat Local characterization

November 19, 2025 2/16



Centred measure fields
o] Yelo)

Some literature on this pseudo-Hilbertian structure

e Introduced in [AGS05]* and [Gig08]? along with a scalar multiplication and a set-valued sum.

IL. Ambrosio, N. Gigli, and G. Savaré, Gradient Flows (2005).
2N. Gigli, “On the geometry of the space of probability measures endowed with the quadratic optimal transport distance” (2008).
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Observation Z7,(T ), splits orthogonally into
e the set of £ that are induced by a map,
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Centred measure fields
[eJe] Yo)

Orthogonality

If &€ = (id, f)sp for some f € LZ(Q;R?), then & = df(,), so that

€= [ [ t@.u)dcwiane) = (1.Bary @)

Observation Z7,(T ), splits orthogonally into On Z2,(T Q)/u very strong property:
e the set of £ that are induced by a map, €0 =
o the set of £ with barycenter 0, noted 275(T Q). s

\

if and only if (£, (x)5, =0 for p—a.e. z.
Bary (§) = 0 iff (7, 75 + 7)€ is @ "martingale plan”.

r

For centred fields, orthogonality is a local phenomenon. ]
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Closed convex cone of centred fields

Theorem [Aus25]' Let A C P,(T Q)Y be a W, —closed nonnegative cone, which is convex
along interpolation through any plan respecting the fibers.

LA. Aussedat, Local structure of centred tangent cones in the Wasserstein space (2025). [ArXiv preprint, same as in the rest of the talk]
Averil Aussedat Local characterization November 19, 2025 5/16



Centred measure fields
oooe

Closed convex cone of centred fields

Theorem [Aus25]' Let A C P,(T Q)Y be a W, —closed nonnegative cone, which is convex
along interpolation through any plan respecting the fibers. Then there exists a measurable appli-
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e Starts with a “nonnegative cone”, ends with a “two-sided cone”.
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Closed convex cone of centred fields

Theorem [Aus25]' Let A C P,(T Q)Y be a W, —closed nonnegative cone, which is convex
along interpolation through any plan respecting the fibers. Then there exists a measurable appli-

cation D such that D(x) is a vector space, and

EcA = [€ is centred and v € D(z) for & — almost any (z,v).]

P‘ e Proved by passing to the orthogonal complement and exploiting the
DR geometry induced by (-, '>u‘
e Starts with a “nonnegative cone”, ends with a “two-sided cone”.

Db / 2 D=io} e Proves convexity as measures.
=IRvV

LA. Aussedat, Local structure of centred tangent cones in the Wasserstein space (2025). [ArXiv preprint, same as in the rest of the talk]
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Centred tangent fields

Definition — Geometric tangent cone [Gig08]' Tan, is the W, —closure of the measure
fields of the form (., Am, )&, where A > 0, and £ induces a geodesic, i.e.

= (g, Ty — T )2t for 1 optimal plan between 1 and some v € Z25(Q).
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Centred tangent fields

Definition — Geometric tangent cone [Gig08]' Tan, is the W, —closure of the measure
fields of the form (., Am, )&, where A > 0, and £ induces a geodesic, i.e.

£ = (Mg, Ty — Tg)an) for n optimal plan between p and some v € Z25(Q).
Denote Tanﬁ = Tan,, N P5(T Q)Y the set of centred tangent measure fields.

0

u is 2 closed convex cone of centred fields.

By Proposition 4.25 of the same reference, Tan

Corollary  Any p € &5(Q) admits D such that £ € Tang iff £ is centred and £(graph D) = 1.

IN. Gigli, “On the geometry of the space of probability measures endowed with the quadratic optimal transport distance” (2008).
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Example 2. If 4 < £, any optimal plan is induced by a map, so Tang ={0,} and D = {0}.
= span{es}.

Example 3. If 1 = (id,0)4Lo,1] in dimension 2, then D(x)
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Example 1. If i = §y, any plan is optimal, so that Tang = P5(TQ)%, and D =R%
Example 2. If 4 < £, any optimal plan is induced by a map, so Tang ={0,} and D = {0}.
Example 3. If 1 = (id,0)4L,1] in dimension 2, then D(x) = span{es}.

Indeed, any & concentrated on graph D induces a geodesic. Al é
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Example 1. If i = §y, any plan is optimal, so that Tang = P5(TQ)%, and D =R%

Example 2. If 4 < £, any optimal plan is induced by a map, so Tang ={0,} and D = {0}.

Example 3. If 1 = (id,0)4L,1] in dimension 2, then D(x) = span{es}.

Indeed, any ¢ concentrated on graph D induces a geodesic.

Conversely, if £ is centred and optimal, then so is
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Example 1. If i = §y, any plan is optimal, so that Tang = P5(TQ)%, and D =R%
Example 2. If 4 < £, any optimal plan is induced by a map, so Tang ={0,} and D = {0}.
Example 3. If 1 = (id,0)4L,1] in dimension 2, then D(x) = span{es}.

Indeed, any & concentrated on graph D induces a geodesic. AC2 %

Conversely, if £ is centred and optimal, then so is

T, (Ty,€1) € . Indeed, for (z;,v;)Y, C su ,
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Examples

Example 1. If i = §y, any plan is optimal, so that Tang = P5(TQ)%, and D =R%

Example 2. If 4 < £, any optimal plan is induced by a map, so Tang ={0,} and D = {0}.

Example 3. If 1 = (id,0)4L,1] in dimension 2, then D(x) = span{es}.

Indeed, any ¢ concentrated on graph D induces a geodesic.

Conversely, if £ is centred and optimal, then so is
(72, (T, €1) e1)x€. Indeed, for (z;,v;)Y, C supp¢,

N
(g —wi_1, i +v;) = 0.
i=1

~ 1D optimal plan from Lo 1}, hence induced by a map,
hence 0, so v L e; £€—a.e.. Up to details, passes to Tang.
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Lott's result

Theorem 1.1 of [Lot16]' If
e M is a smooth submanifold of dimension k,
o 1 < H* L M, with H* the Hausdorff measure, V{z

1J. Lott, “On tangent cones in Wasserstein space” (2016).
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Lott's result

Theorem 1.1 of [Lot16]' If

e M is a smooth submanifold of dimension k,
o < HFL M, with H* the Hausdorff measure, p/f'l
then £ € Tang if and only if (£ is centred and)

vl T, M & — almost everywhere. é

T

In other words, D(z) = (T, M)= .

1J. Lott, “On tangent cones in Wasserstein space” (2016).
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Zajicek's theorem
[ le]

Statement

Definition A set A C R? is DC;, (Difference of Convex of dim k) if up to permuting the axes,

A={(z1, 2k, ®(x1, - ,21)) | & :R" = RI* with each ®; = convex — convex } .

Averil Aussedat Local characterization November 19, 2025 9/16



Zajicek's theorem
[ le]

Statement

Definition A set A C R? is DC;, (Difference of Convex of dim k) if up to permuting the axes,
A={(z1, 2k, ®(x1, - ,21)) | & :R" = RI* with each ®; = convex — convex } .

A set A is 0—DCy if is can be covered by countably many DCy, sets.

Averil Aussedat Local characterization November 19, 2025 9/16



Zajicek's theorem
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Statement

Definition A set A C R? is DC;, (Difference of Convex of dim k) if up to permuting the axes,

A={(z1, 2k, ®(x1, - ,21)) | & :R" = RI* with each ®; = convex — convex } .

A set A is 0—DCy if is can be covered by countably many DCy, sets.

Given ¢ : RY — R convex, let Ji () = {:L' € R4 | dimo,p > d — k}

L. Zajicek, “On the differentiation of convex functions in finite and infinite dimensional spaces” (1979).
See also G. Alberti, “On the structure of singular sets of convex functions” (1994).
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Statement

Definition A set A C R? is DC;, (Difference of Convex of dim k) if up to permuting the axes,

A={(z1, 2k, ®(x1, - ,21)) | & :R" = RI* with each ®; = convex — convex } .

A set A is 0—DCy if is can be covered by countably many DCy, sets.

Given ¢ : RY — R convex, let Ji () = {:L' € R4 | dimo,p > d — k‘}

Theorem 1 of [Zaj79]' If ¢ : R — R is convex, then each Ji(¢) is 0—DCx.
Conversely, if A C R? is 0—DCy, there exists a convex ¢ : R? — R such that A C Ji(y).

L. Zajicek, “On the differentiation of convex functions in finite and infinite dimensional spaces” (1979).
See also G. Alberti, “On the structure of singular sets of convex functions” (1994).
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An application

Let S C R% be closed, and consider

T:={zeR? | projg(x) has more than one element} .

Then T is 0—DCq.1.
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. 2 2 . 2
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An application

Let S C R% be closed, and consider

T:={zeR? | projg(x) has more than one element} .
Then T is 0—DCq.1. Indeed, consider

. 2 2 . 2
= — = -2 .
¢(z) min |z —y|® = |z] + min (z,y) + |yl

Then ¢ is semiconcave and Jy_1(¢) =T.
By Zajicek, T'is c—DCqy_1.

The set on which there is a decision to make is c—DCy.1.
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[ Jelelelo)

Statement

Theorem Let u € P5(Q2). There exists a unique decomposition pu = ZZ:O i in mutually
singular measures such that

e /i, is concentrated on a c—DCy set Ay, and gives 0 mass to DC; sets for j < k;

OH'OAO

O ® f*’ﬂ- A:L
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Theorem Let u € P5(Q2). There exists a unique decomposition pu = ZZ:O i in mutually
singular measures such that

e /i, is concentrated on a c—DCy set Ay, and gives 0 mass to DC; sets for j < k;
e the application D characterizing Tang is given by D(z) = (T, Ax)* for up—a.e. x € Q.

% m %t&o Ao (TaoY=IR*
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Decomposition in the general case
[ Jelelelo)

Statement

Theorem Let u € P5(Q2). There exists a unique decomposition pu = ZZ:O i in mutually
singular measures such that

e /i, is concentrated on a c—DCy set Ay, and gives 0 mass to DC; sets for j < k;
e the application D characterizing Tang is given by D(z) = (T, Ax)* for up—a.e. x € Q.

% m %t&o Ao (TaoY=IR*
X

Explicitly, £ € Tang if and only if £ is (centred and) concentrated on the normal spaces to each Ay.
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Projection on Tang‘

For each x, denote projp(,) : RY — R? the projection over D(z). .
?rﬂbm(ﬂ
2
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Decomposition in the general case
0@000

Projection on Tang‘

For each x, denote projp(,) : RY — R? the projection over D(z). g:b

r

Corollary ~ For any £ € 2,(T )Y, the measure field g

{p = (7a, Proj p(a) (70))2€

is the unique minimizer of W,,((,&) over ¢ € Tang.
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Decomposition in the general case
0@000

Projection on Tang‘

For each x, denote projp(,) : RY — R? the projection over D(z). g:b
Corollary  For any £ € &25(T Q)g the measure field g
Ep = (Tz, Proj p(4)(mv))#€ l.k
is the unique minimizer of W,,((,&) over ¢ € Tang.

By construction, ¢p € Tanﬂ. Conversely, let ¢ € Tang, and « realize W, (¢,£). Then

W2(C.€) = / v — wlda > / [Proi ey (w) — w[da > W2(Ep, £).
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Decomposition in the general case
00000

How does it work: the measures (pu )

Natural candidates: py = pl {dim D = d — k}. How to get concentration on a 0—DCy set?

Lemma Tanzk coincides with the “restriction” of Tang to {dim D =d — k}.

Now,

0
HE

e Approximate by an optimal plan, which splits mass in d — k directions on a set of large p—mass.

o get & € Tan,_ splitting mass in d — k directions.

e Hence some Kantorovich potential must have a subdifferential of dimension d — k.

Kantorovich potentials are semiconvex, so by Zajicek, uy is concentrated on a 0—DC set Ay.
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How does it work: the tangent planes T, A

Let 1, be concentrated on a 0—DCy set Ay, and give 0 mass to DC; sets for j < k.
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Decomposition in the general case
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How does it work: the tangent planes T, A

Let 1, be concentrated on a 0—DCy set Ay, and give 0 mass to DC; sets for j < k.

Definition — Tangent planes  Cover A by (B;) en, with B; ~ ®;(R¥) for ®;, = f; 0 — gj.e,
with £, ;0 : R¥ — R convex. Then T, Ay, exists if

o for all j such that z € Bj, each f; ., g, is differentiable,

e all V,®; coincide, in which case T, Aj == V,®;(R¥).

By Zajicek, T, Ay, exists pi—almost everywhere. ]

Stays to show that D(z) = (T, Ag)* for jup—a.e. point x € Q.
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Decomposition in the general case
0000e

How does it work: orthogonality

Let ¢ be convex with Ji(¢) = {z | dimdyp > d — k} a smooth surface. Assume that for any
x € Ji(p), there holds 9,0 = conv {go(z), -+ ,ga—x(x)} for continuous (g;);.
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How does it work: orthogonality

Let ¢ be convex with Ji(¢) = {z | dimdyp > d — k} a smooth surface. Assume that for any
x € Ji(p), there holds 9, = conv {go(x), -, ga—r(x)} for continuous (g;);. Then

span 9, = span {g;(z) — go(x)}=F L Ty Ju(y).

For any smooth curve v C Ji (), there holds

©(ve) = (o) + (9:(70), 7e — v0) = @(ve) + (go(ve), Y0 — Ye) + (9:(70), 7 — Y0) -

Therefore, dividing by t > 0,

— (9i(70) — 90(70),70) -

Yt — Y
0> <gi(70) — go(), & > S

t
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Decomposition in the general case

[e]e]ee] }

How does it work: orthogonality

Let ¢ be convex with Ji(¢) = {z | dimdyp > d — k} a smooth surface. Assume that for any
x € Ji(p), there holds 9, = conv {go(x), -, ga—r(x)} for continuous (g;);. Then

span 9, = span {g;(z) — go(x)}=F L Ty Ju(y).

For any smooth curve v C Ji (), there holds
©(1) = ¢(v0) + (9:(70), 7t —v0) = ©() + (90(7e), Y0 — Vi) + (9:(70)5 e — Y0) -
Therefore, dividing by t > 0,

0> <gi(70) — go(y), 2 ; %> 0 (9:(70) — 90(70),%0) -

Interchanging ¢ and 0, we get g;(x) — go(z) L T, Ji ().
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Decomposition in the general case
00000

Directions and open questions

e Ongoing work (and part of the motivation); edge cases where the tangent cone does not behave as
expected.
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Decomposition in the general case
00000

Directions and open questions

e Ongoing work (and part of the motivation); edge cases where the tangent cone does not behave as
expected.

Open questions
e What can be said about the projection on Tan,, for fields that are induced by a map?
e Is there a similar decomposition with rectifiable pieces / what would be the correct cost?

Thank you for your attention!
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