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The metric space P2(Rd) Decomposition for measure fields Characterization of Tan

Helmholtz decomposition

Theorem – HH decomposition [Lad87] Let f ∈ L2(Rd;Rd). There exists two
uniquely defined vector fields g, h ∈ L2(Rd;Rd) such that

f = g + h, g ∈ {∇φ | φ ∈ C∞
c }L

2

, h ∈ {φ ∈ C∞
c (Rd;Rd) | divφ = 0}

L2

.

= +
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The metric space P2(Rd) Decomposition for measure fields Characterization of Tan

Aim of the talk

• Introduce a generalization in the case of
measure fields.

• Vector field : x 7→ f(x) ∈ TxRd.
• Measure field : x 7→ ξx ∈ P(TxRd).
• To allow for definitions only µ−a.e.,

better suited to consider measures on
TRd = {(x, v)} with x ∈ Rd and
v ∈ TxRd, i.e.

ξ ∈ P(TRd).

• Derive a formulation of the tangent cone
to the Wasserstein space.
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Wasserstein space

Let µ0, µ1 be Borel probability measures such that
∫
x∈Rd |x|2 dµi(x) < ∞.

Def – Wasserstein distance

d2W(µ, ν) := inf

∫
(x,y)∈(Rd)2

|x− y|2 dω,

where ω ∈ P2((Rd)2) is such that∫
x
dω = ν and

∫
y
dω = µ.

(
P2(Rd), dW

)
is a complete geodesic metric space.
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Measure fields

Let TRd :=
{
(x, v)

∣∣ x ∈ Rd, v ∈ TxRd
}
. Denote f#α the measure α(f−1(·)).

Def – Measure field A measure ξ ∈ P2(TRd) is a measure field attached to µ ∈
P2(Rd), denoted ξ ∈ P2(TRd)µ, if πx#ξ = µ.

Any vector field f ∈ L2
µ identifies with ξ = f#µ, for which ξx = δ(x,f(x)).

Def – Distance between measure fields [Gig08]

W 2
µ (ξ, ζ) :=

∫
x∈Rd

d2W,TxRd (ξx, ζx) dµ(x).

In particular, Wµ(f#µ, g#µ) = ∥f − g∥L2
µ
.
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Tangent cone: the geometric approach

Canonical construction of the tangent
cone [AGS05, Gig08]

Let µ ∈ P2(Rd).

Consider
• the η ∈ P2(TRd)µ such that

s 7→ (πx + sπv)#η

is a geodesic;
• the positive cone α · η for all α ⩾ 0,
• the completion of the previous cone

with respect to Wµ.
The resulting set is denoted TanµP2(Rd).
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Link with gradient fields

What is the link between Tanµ and gradient fields?

First, if µ is “kind”, direct representation.

Theorem – Tangent space to a regular measure [Bre91] Assume that µ is abso-
lutely continuous with respect to the Lebesgue measure. Then

TanµP2(Rd) = {∇φ | φ ∈ C∞
c }L

2
µ#µ =: TanµP2(Rd).

In the general case, one has the following.

Theorem – Vertical superposition of the tangent cone For any η ∈ TanµP2(Rd),
there exists ϖ ∈ P2(Tanµ) such that for all φ ∈ Cb(Rd;R),∫

(x,v)∈TRd

φ(x, v)dη(x, v) =

∫
b∈Tanµ

∫
x∈Rd

φ(x, b(x))dµ(x)dϖ(b).
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Solenoidal measure fields

In L2
µ, solenoidal (divergence-free) fields are orthogonal to gradient vector fields.

Def – Metric scalar product Let µ ∈ P2(Rd), and ξ, ζ ∈ P2(TRd)µ.

⟨ξ, ζ⟩µ :=
1

2

[
∥ξ∥2µ + ∥ζ∥2µ −W 2

µ(ξ, ζ)
]
, where ∥ξ∥µ := W 2

µ(ξ, 0µ).

We may now define the set SolµP2(Rd).

Def – Solenoidal measure fields An element ζ ∈ P2(TRd)µ is said solenoidal if

⟨η, ζ⟩µ = 0 ∀η ∈ TanµP2(Rd).

Averil Prost Swirling measures April 30, 2024 10 / 15
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Examples

• If µ = δx, then Solµ = {0µ}. Indeed, any ξ ∈ P2(TRd)µ induces a geodesic, hence
belongs to the tangent cone.

Very small!

• If µ is absolutely continuous, then Tanµ = Tanµ and for any ζ ∈ P2(TRd)µ,

⟨f#µ, ζ⟩µ = ⟨f,BaryTRd (ζ)⟩L2
µ
, where BaryTRd (ζ)(x) =

∫
v∈TxRd

vdζ(x, v).

Hence ζ ∈ Solµ iff its barycenter is a solenoidal vector field. Very large!

Averil Prost Swirling measures April 30, 2024 11 / 15
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HH decomposition for measure fields

Recall that in the classical case, f = g + h, or in weak form,∫
x
φ(x, f(x))dµ =

∫
x
φ(x, g(x) + h(x))dµ ∀φ ∈ Cb(TRd;R).

Theorem – HH decomposition For any ξ ∈ P2(TRd)µ, there exists an unique pair
η ∈ Tanµ and ζ ∈ Solµ such that for some measurable family (αx)x with αx ∈ Γ(ηx, ζx)
for a.e. x ∈ suppµ,∫

(x,v)
φ(x, v)dξ =

∫
x∈Rd,

(v,w)∈(TxRd)2

φ(x, v + w)d[αx ⊗ µ] ∀φ ∈ Cb(TRd;R).
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Escaping behaviour

Proposition A measure field ξ is solenoidal
if and only if

lim
h↘0

dW(µ, (πx + hπv)#ξ)

h
= 0.

In this case, the tangent component of ξ is 0µ.
In general, if πµξ denotes the tangent component,

lim
h↘0

dW((πx + hπv)#πµξ, (πx + hπv)#ξ)

h
= 0.
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Tangent cone: quotient approach

Construction of the tangent cone

Let µ ∈ P2(Rd). Consider
• the ξ ∈ P2(TRd)µ such that

s 7→ (πx + sπv)#ξ

is a geodesic;
• the positive cone α · ξ for all α ⩾ 0,
• the completion of the previous cone

with respect to Wµ.
The resulting set is denoted TanµP2(Rd).

Quotient construction

Let µ ∈ P2(Rd).

Define ξ ∼µ ζ if

dW ((πx + hπv)#ξ, (πx + hπv)#ζ) = o(h).

TanµP2(Rd)
isometry
= P2(Rd)µ/ ∼µ .

That’s it!
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Thank you!
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