Swirling measures

The quotient structure of the tangent cone to the Wasserstein space

Averil Prost LMI, INSA Rouen Normandie Hasnaa Zidani and Nicolas Forcadel (LMI)

July 5, 2024 Journée de la fédération Normandie Mathématiques, Rouen

 $\underset{000}{\text{Characterization of Tan}}$

Helmholtz decomposition

Theorem – HH decomposition [Lad87] Let $f \in L^2(\mathbb{R}^d; \mathbb{R}^d)$. There exists two uniquely defined vector fields $g, h \in L^2(\mathbb{R}^d; \mathbb{R}^d)$ such that

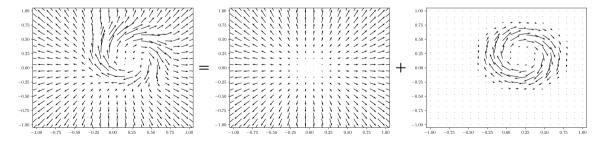
$$f = g + h, \qquad g \in \overline{\{\nabla \varphi \mid \varphi \in \mathcal{C}^\infty_c\}}^{L^2}, \qquad h \in \overline{\{\varphi \in \mathcal{C}^\infty_c(\mathbb{R}^d; \mathbb{R}^d) \mid \operatorname{div} \varphi = 0\}}^{L^2}.$$

 $\underset{000}{\text{Characterization of Tan}}$

Helmholtz decomposition

Theorem – HH decomposition [Lad87] Let $f \in L^2(\mathbb{R}^d; \mathbb{R}^d)$. There exists two uniquely defined vector fields $g, h \in L^2(\mathbb{R}^d; \mathbb{R}^d)$ such that

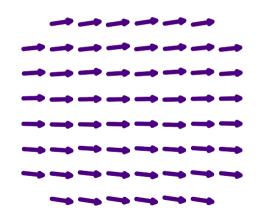
$$f = g + h, \qquad g \in \overline{\{\nabla \varphi \mid \varphi \in \mathcal{C}^\infty_c\}}^{L^2}, \qquad h \in \overline{\{\varphi \in \mathcal{C}^\infty_c(\mathbb{R}^d; \mathbb{R}^d) \mid \operatorname{div} \varphi = 0\}}^{L^2}.$$



 $\underset{000}{\text{Characterization of Tan}}$

Aim of the talk

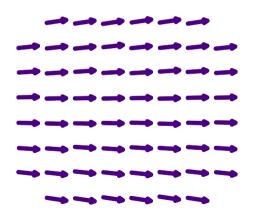
Introduce a generalization in the case of measure fields.



 $\underset{000}{\text{Characterization of Tan}}$

Aim of the talk

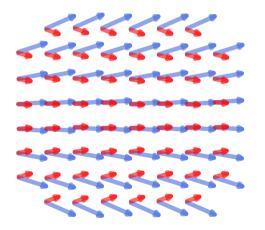
- Introduce a generalization in the case of measure fields.
 - Vector field : $x \mapsto f(x) \in \mathsf{T}_x \mathbb{R}^d$.



Characterization of Tan

Aim of the talk

- Introduce a generalization in the case of measure fields.
 - Vector field : $x \mapsto f(x) \in \mathsf{T}_x \mathbb{R}^d$.
 - Measure field : $x \mapsto \xi_x \in \mathscr{P}(\mathsf{T}_x \mathbb{R}^d)$.

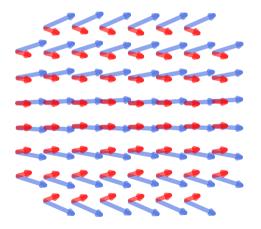


 $\underset{000}{\text{Characterization of Tan}}$

Aim of the talk

- Introduce a generalization in the case of measure fields.
 - Vector field : $x \mapsto f(x) \in \mathsf{T}_x \mathbb{R}^d$.
 - Measure field : $x \mapsto \xi_x \in \mathscr{P}(\mathsf{T}_x \mathbb{R}^d)$.
 - To allow for definitions only μ -a.e., better suited to consider measures on $T\mathbb{R}^d = \{(x, v)\}$ with $x \in \mathbb{R}^d$ and $v \in T_x \mathbb{R}^d$, i.e.

$$\xi \in \mathscr{P}(\mathsf{T}\mathbb{R}^d).$$



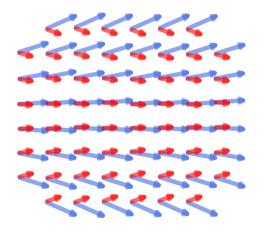
Characterization of Tan

Aim of the talk

- Introduce a generalization in the case of measure fields.
 - Vector field : $x \mapsto f(x) \in \mathsf{T}_x \mathbb{R}^d$.
 - Measure field : $x \mapsto \xi_x \in \mathscr{P}(\mathsf{T}_x \mathbb{R}^d)$.
 - To allow for definitions only μ -a.e., better suited to consider measures on $\mathbb{T}\mathbb{R}^d = \{(x, v)\}$ with $x \in \mathbb{R}^d$ and $v \in \mathbb{T}_x \mathbb{R}^d$, i.e.

$$\xi \in \mathscr{P}(\mathsf{T}\mathbb{R}^d).$$

• Derive a formulation of the tangent cone to the Wasserstein space.



 $\underset{000}{\text{Characterization of Tan}}$

Table of Contents

The metric space $\mathscr{P}_2(\mathbb{R}^d)$

Decomposition for measure fields

Characterization of Tan

The metric space $0 \bullet 000$	$\mathscr{P}_2(\mathbb{R}^d)$
----------------------------------	-------------------------------

 $\underset{000}{\text{Characterization of Tan}}$

Wasserstein space

Let μ_0, μ_1 be Borel probability measures such that $\int_{x \in \mathbb{R}^d} |x|^2 d\mu_i(x) < \infty$.

 $\underset{000}{\text{Characterization of Tan}}$

Wasserstein space

Let μ_0, μ_1 be Borel probability measures such that $\int_{x \in \mathbb{R}^d} |x|^2 d\mu_i(x) < \infty$.

Def – Wasserstein distance

$$d_{\mathcal{W}}^2(\mu,\nu) \coloneqq \inf \int_{(x,y)\in (\mathbb{R}^d)^2} |x-y|^2 \, d\omega,$$

where $\omega\in \mathscr{P}_2((\mathbb{R}^d)^2)$ is such that

$$\int_x d\omega = \nu \quad \text{and} \quad \int_y d\omega = \mu.$$

 $\left(\mathscr{P}_2(\mathbb{R}^d), d_{\mathcal{W}}\right)$ is a complete geodesic metric space.

 $\underset{0000}{\text{Decomposition for measure fields}}$

 $\underset{000}{\text{Characterization of Tan}}$

Wasserstein space

Let
$$\mu_0, \mu_1$$
 be Borel probability measures such that $\int_{x\in \mathbb{R}^d} |x|^2 \, d\mu_i(x) < \infty.$

Def - Wasserstein distance

$$d_{\mathcal{W}}^2(\mu,\nu) \coloneqq \inf \int_{(x,y)\in (\mathbb{R}^d)^2} |x-y|^2 \, d\omega,$$

where $\omega \in \mathscr{P}_2((\mathbb{R}^d)^2)$ is such that

$$\int_x d\omega = \nu$$
 and $\int_y d\omega = \mu$.

 $\left(\mathscr{P}_2(\mathbb{R}^d), d_{\mathcal{W}}\right)$ is a complete geodesic metric space.



 $\underset{000}{\text{Characterization of Tan}}$

Wasserstein space

Let μ_0, μ_1 be Borel probability measures such that $\int_{x \in \mathbb{R}^d} |x|^2 d\mu_i(x) < \infty$.

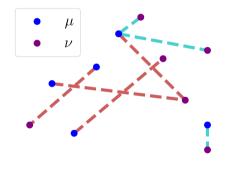
Def – Wasserstein distance

$$d_{\mathcal{W}}^2(\mu,\nu) \coloneqq \inf \int_{(x,y)\in (\mathbb{R}^d)^2} |x-y|^2 \, d\omega,$$

where $\omega\in \mathscr{P}_2((\mathbb{R}^d)^2)$ is such that

$$\int_x d\omega = \nu$$
 and $\int_y d\omega = \mu$.

 $\left(\mathscr{P}_2(\mathbb{R}^d), d_\mathcal{W}\right)$ is a complete geodesic metric space.



 $\underset{000}{\text{Characterization of Tan}}$

Wasserstein space

Let μ_0, μ_1 be Borel probability measures such that $\int_{x \in \mathbb{R}^d} |x|^2 d\mu_i(x) < \infty$.

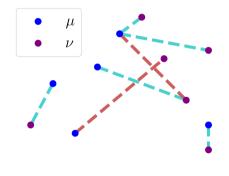
Def – Wasserstein distance

$$d_{\mathcal{W}}^2(\mu,\nu) \coloneqq \inf \int_{(x,y)\in (\mathbb{R}^d)^2} |x-y|^2 \, d\omega,$$

where $\omega\in \mathscr{P}_2((\mathbb{R}^d)^2)$ is such that

$$\int_x d\omega = \nu$$
 and $\int_y d\omega = \mu$.

 $\left(\mathscr{P}_2(\mathbb{R}^d), d_\mathcal{W}\right)$ is a complete geodesic metric space.



 $\underset{000}{\text{Characterization of Tan}}$

Wasserstein space

Let μ_0, μ_1 be Borel probability measures such that $\int_{x \in \mathbb{R}^d} |x|^2 d\mu_i(x) < \infty$.

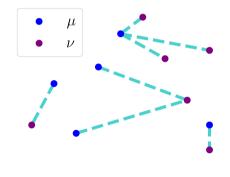
Def – Wasserstein distance

$$d_{\mathcal{W}}^2(\mu,\nu) \coloneqq \inf \int_{(x,y)\in (\mathbb{R}^d)^2} |x-y|^2 \, d\omega,$$

where $\omega\in \mathscr{P}_2((\mathbb{R}^d)^2)$ is such that

$$\int_x d\omega = \nu$$
 and $\int_y d\omega = \mu$.

 $\left(\mathscr{P}_2(\mathbb{R}^d), d_\mathcal{W}\right)$ is a complete geodesic metric space.



The metric	space	$\mathscr{P}_2(\mathbb{R}^d)$
000000		

 $\underset{0000}{\text{Decomposition for measure fields}}$

 $\underset{000}{\text{Characterization of Tan}}$

Measure fields

Let $\mathsf{T}\mathbb{R}^d \coloneqq \{(x,v) \mid x \in \mathbb{R}^d, v \in \mathsf{T}_x\mathbb{R}^d\}$. Denote $f \# \alpha$ the measure $\alpha(f^{-1}(\cdot))$.

Measure fields

Let $\mathsf{T}\mathbb{R}^d \coloneqq \{(x,v) \mid x \in \mathbb{R}^d, v \in \mathsf{T}_x\mathbb{R}^d\}$. Denote $f \# \alpha$ the measure $\alpha(f^{-1}(\cdot))$.

Def – **Measure field** A measure $\xi \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)$ is a measure field attached to $\mu \in \mathscr{P}_2(\mathbb{R}^d)$, denoted $\xi \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$, if $\pi_x \# \xi = \mu$.

Measure fields

Let
$$\mathsf{T}\mathbb{R}^d \coloneqq \{(x,v) \mid x \in \mathbb{R}^d, v \in \mathsf{T}_x\mathbb{R}^d\}$$
. Denote $f \# \alpha$ the measure $\alpha(f^{-1}(\cdot))$.

Def – **Measure field** A measure $\xi \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)$ is a measure field attached to $\mu \in \mathscr{P}_2(\mathbb{R}^d)$, denoted $\xi \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$, if $\pi_x \# \xi = \mu$.

Any vector field $f \in L^2_{\mu}$ identifies with $\xi = f \# \mu$, for which $\xi_x = \delta_{(x,f(x))}$.

Def – Distance between measure fields [Gig08]

$$W^2_{\mu}(\xi,\zeta) \coloneqq \int_{x \in \mathbb{R}^d} d^2_{\mathcal{W},\mathsf{T}_x\mathbb{R}^d} \left(\xi_x,\zeta_x\right) d\mu(x).$$

Measure fields

Let
$$\mathsf{T}\mathbb{R}^d \coloneqq \{(x,v) \mid x \in \mathbb{R}^d, v \in \mathsf{T}_x\mathbb{R}^d\}$$
. Denote $f \# \alpha$ the measure $\alpha(f^{-1}(\cdot))$.

Def – **Measure field** A measure $\xi \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)$ is a measure field attached to $\mu \in \mathscr{P}_2(\mathbb{R}^d)$, denoted $\xi \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$, if $\pi_x \# \xi = \mu$.

Any vector field $f \in L^2_{\mu}$ identifies with $\xi = f \# \mu$, for which $\xi_x = \delta_{(x,f(x))}$.

Def – Distance between measure fields [Gig08]

$$W^2_{\mu}(\xi,\zeta) \coloneqq \int_{x \in \mathbb{R}^d} d^2_{\mathcal{W},\mathsf{T}_x\mathbb{R}^d} \left(\xi_x,\zeta_x\right) d\mu(x).$$

In particular, $W_{\mu}(f \# \mu, g \# \mu) = \|f - g\|_{L^2_{\mu}}$.

 $\underset{000}{\text{Characterization of Tan}}$

Tangent cone: the geometric approach

Canonical construction of the tangent cone [AGS05, Gig08]

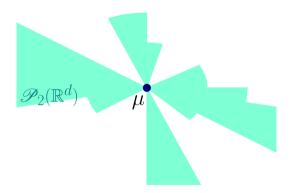
Let $\mu \in \mathscr{P}_2(\mathbb{R}^d)$.

Characterization of Tan

Tangent cone: the geometric approach

Canonical construction of the tangent cone [AGS05, Gig08]

Let $\mu \in \mathscr{P}_2(\mathbb{R}^d)$.



Characterization of Tan

Tangent cone: the geometric approach

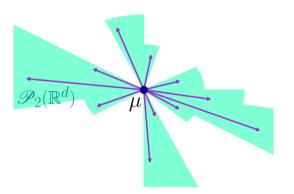
Canonical construction of the tangent cone [AGS05, Gig08]

Let $\mu \in \mathscr{P}_2(\mathbb{R}^d)$. Consider

• the $\eta\in \mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_\mu$ such that

 $s \mapsto (\pi_x + s\pi_v) \# \eta$

is a geodesic;



Characterization of Tan

Tangent cone: the geometric approach

Canonical construction of the tangent cone [AGS05, Gig08]

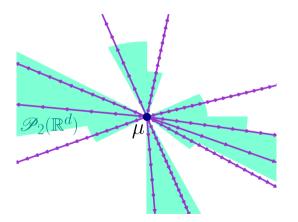
Let $\mu \in \mathscr{P}_2(\mathbb{R}^d)$. Consider

• the $\eta\in \mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_\mu$ such that

 $s \mapsto (\pi_x + s\pi_v) \# \eta$

is a geodesic;

• the positive cone $\alpha \cdot \eta$ for all $\alpha \ge 0$,



 $\underset{000}{\text{Characterization of Tan}}$

Tangent cone: the geometric approach

Canonical construction of the tangent cone [AGS05, Gig08]

Let $\mu \in \mathscr{P}_2(\mathbb{R}^d)$. Consider

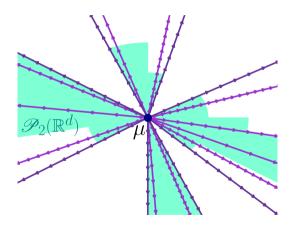
• the $\eta\in \mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_\mu$ such that

 $s \mapsto (\pi_x + s\pi_v) \# \eta$

is a geodesic;

- the positive cone $\alpha\cdot\eta$ for all $\alpha\geqslant 0$,
- the completion of the previous cone with respect to W_{μ} .

The resulting set is denoted $\operatorname{Tan}_{\mu}\mathscr{P}_{2}(\mathbb{R}^{d})$.



Link with gradient fields

What is the link between Tan_{μ} and gradient fields?

Link with gradient fields

What is the link between Tan_{μ} and gradient fields? First, if μ is "kind", direct representation.

Theorem – Tangent space to a regular measure [Bre91] Assume that μ is absolutely continuous with respect to the Lebesgue measure. Then

$$\mathsf{Tan}_{\mu}\mathscr{P}_{2}(\mathbb{R}^{d}) = \overline{\{\nabla \varphi \mid \varphi \in \mathcal{C}^{\infty}_{c}\}}^{L^{2}_{\mu}} \# \mu \eqqcolon \mathsf{Tan}_{\mu}\mathscr{P}_{2}(\mathbb{R}^{d}).$$

Link with gradient fields

What is the link between Tan_{μ} and gradient fields? First, if μ is "kind", direct representation.

Theorem – Tangent space to a regular measure [Bre91] Assume that μ is absolutely continuous with respect to the Lebesgue measure. Then

$$\mathsf{Tan}_{\mu}\mathscr{P}_{2}(\mathbb{R}^{d}) = \overline{\{\nabla \varphi \mid \varphi \in \mathcal{C}^{\infty}_{c}\}}^{L^{2}_{\mu}} \# \mu \eqqcolon \mathsf{Tan}_{\mu}\mathscr{P}_{2}(\mathbb{R}^{d}).$$

In the general case, one has the following.

Theorem – Vertical superposition of the tangent cone For any $\eta \in \operatorname{Tan}_{\mu} \mathscr{P}_{2}(\mathbb{R}^{d})$, there exists $\varpi \in \mathscr{P}_{2}(\operatorname{Tan}_{\mu})$ such that for all $\varphi \in \mathcal{C}_{b}(\mathbb{R}^{d};\mathbb{R})$,

$$\int_{(x,v)\in \mathsf{T}\mathbb{R}^d}\varphi(x,v)d\eta(x,v)=\int_{b\in \mathsf{Tan}_{\mu}}\int_{x\in \mathbb{R}^d}\varphi(x,b(x))d\mu(x)d\varpi(b).$$

Decomposition for measure fields $_{\odot \odot \odot \odot}$

 $\underset{000}{\text{Characterization of Tan}}$

Table of Contents

The metric space $\mathscr{P}_2(\mathbb{R}^d)$

Decomposition for measure fields

Characterization of Tan

 $\underset{000}{\text{Characterization of Tan}}$

Solenoidal measure fields

In L^2_{μ} , solenoidal (divergence-free) fields are orthogonal to gradient vector fields.

Solenoidal measure fields

In L^2_{μ} , solenoidal (divergence-free) fields are orthogonal to gradient vector fields.

Def – Metric scalar product Let $\mu \in \mathscr{P}_2(\mathbb{R}^d)$, and $\xi, \zeta \in \mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_{\mu}$.

 $\langle \xi, \zeta \rangle_{\mu} \coloneqq \frac{1}{2} \left[\|\xi\|_{\mu}^{2} + \|\zeta\|_{\mu}^{2} - W_{\mu}^{2}(\xi, \zeta) \right], \qquad \qquad \text{where } \|\xi\|_{\mu} \coloneqq W_{\mu}^{2}(\xi, 0_{\mu}).$

Solenoidal measure fields

In L^2_{μ} , solenoidal (divergence-free) fields are orthogonal to gradient vector fields.

Def – Metric scalar product Let $\mu \in \mathscr{P}_2(\mathbb{R}^d)$, and $\xi, \zeta \in \mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_{\mu}$.

$$\langle \xi, \zeta \rangle_\mu \coloneqq \frac{1}{2} \left[\|\xi\|_\mu^2 + \|\zeta\|_\mu^2 - W_\mu^2(\xi, \zeta) \right], \qquad \qquad \text{where } \|\xi\|_\mu \coloneqq W_\mu^2(\xi, 0_\mu).$$

We may now define the set $\mathbf{Sol}_{\mu}\mathscr{P}_{2}(\mathbb{R}^{d})$.

Def – Solenoidal measure fields An element $\zeta \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$ is said solenoidal if $\langle \eta, \zeta \rangle_{\mu} = 0$ $\forall \eta \in \operatorname{Tan}_{\mu} \mathscr{P}_2(\mathbb{R}^d).$

• If $\mu = \delta_x$, then $Sol_{\mu} = \{0_{\mu}\}$. Indeed, any $\xi \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$ induces a geodesic, hence belongs to the tangent cone.

• If $\mu = \delta_x$, then $Sol_{\mu} = \{0_{\mu}\}$. Indeed, any $\xi \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$ induces a geodesic, hence belongs to the tangent cone. Very small!

- If $\mu = \delta_x$, then $Sol_{\mu} = \{0_{\mu}\}$. Indeed, any $\xi \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$ induces a geodesic, hence belongs to the tangent cone. Very small!
- If μ is absolutely continuous, then $\operatorname{Tan}_{\mu} = \operatorname{Tan}_{\mu}$ and for any $\zeta \in \mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_{\mu}$,

$$\left\langle f \# \mu, \zeta \right\rangle_{\mu} = \left\langle f, \mathsf{Bary}_{\mathsf{T}\mathbb{R}^{d}}\left(\zeta\right) \right\rangle_{L^{2}_{\mu}}, \qquad \mathsf{where} \; \mathsf{Bary}_{\mathsf{T}\mathbb{R}^{d}}\left(\zeta\right)(x) = \int_{v \in \mathsf{T}_{x}\mathbb{R}^{d}} v d\zeta(x, v).$$

- If $\mu = \delta_x$, then $Sol_{\mu} = \{0_{\mu}\}$. Indeed, any $\xi \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$ induces a geodesic, hence belongs to the tangent cone. Very small!
- If μ is absolutely continuous, then $\operatorname{Tan}_{\mu} = \operatorname{Tan}_{\mu}$ and for any $\zeta \in \mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_{\mu}$,

$$\left\langle f \# \mu, \zeta \right\rangle_{\mu} = \left\langle f, \mathsf{Bary}_{\mathsf{T}\mathbb{R}^{d}}\left(\zeta\right) \right\rangle_{L^{2}_{\mu}}, \qquad \text{where } \mathsf{Bary}_{\mathsf{T}\mathbb{R}^{d}}\left(\zeta\right)(x) = \int_{v \in \mathsf{T}_{x}\mathbb{R}^{d}} v d\zeta(x, v).$$

Hence $\zeta \in \mathbf{Sol}_{\mu}$ iff its barycenter is a solenoidal vector field.

- If $\mu = \delta_x$, then $Sol_{\mu} = \{0_{\mu}\}$. Indeed, any $\xi \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$ induces a geodesic, hence belongs to the tangent cone. Very small!
- If μ is absolutely continuous, then $\operatorname{Tan}_{\mu} = \operatorname{Tan}_{\mu}$ and for any $\zeta \in \mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_{\mu}$,

$$\left\langle f \# \mu, \zeta \right\rangle_{\mu} = \left\langle f, \mathsf{Bary}_{\mathsf{T}\mathbb{R}^{d}}\left(\zeta\right) \right\rangle_{L^{2}_{\mu}}, \qquad \text{where } \mathsf{Bary}_{\mathsf{T}\mathbb{R}^{d}}\left(\zeta\right)(x) = \int_{v \in \mathsf{T}_{x}\mathbb{R}^{d}} v d\zeta(x, v).$$

Hence $\zeta \in \mathbf{Sol}_{\mu}$ iff its barycenter is a solenoidal vector field. Very large!

Recall that in the classical case, f = g + h, or in weak form,

$$\int_x \varphi(x, f(x)) d\mu = \int_x \varphi(x, g(x) + h(x)) d\mu \qquad \forall \varphi \in \mathcal{C}_b(\mathsf{T}\mathbb{R}^d; \mathbb{R}).$$

Recall that in the classical case, f = g + h, or in weak form,

$$\int_{x} \varphi(x, f(x)) d\mu = \int_{x} \varphi(x, g(x) + h(x)) d\mu \qquad \forall \varphi \in \mathcal{C}_{b}(\mathsf{T}\mathbb{R}^{d}; \mathbb{R}).$$

Theorem – HH decomposition For any $\xi \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$, there exists an unique pair $\eta \in \operatorname{Tan}_{\mu}$ and $\zeta \in \operatorname{Sol}_{\mu}$ such that for some measurable family $(\alpha_x)_x$ with $\alpha_x \in \Gamma(\eta_x, \zeta_x)$ for a.e. $x \in \operatorname{supp}_{\mu}$,

$$\int_{(x,v)} \varphi(x,v) d\xi = \int_{\substack{x \in \mathbb{R}^d, \\ (v,w) \in (\mathsf{T}_x \mathbb{R}^d)^2}} \varphi(x,v+w) d[\alpha_x \otimes \mu] \qquad \forall \varphi \in \mathcal{C}_b(\mathsf{T} \mathbb{R}^d;\mathbb{R}).$$

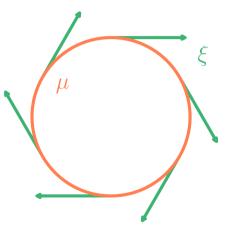
Table of Contents

The metric space $\mathscr{P}_2(\mathbb{R}^d)$

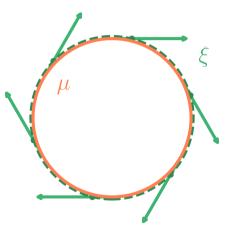
Decomposition for measure fields

Characterization of Tan

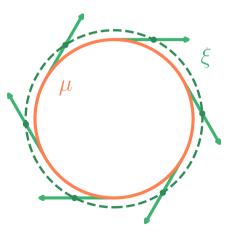
Proposition A measure field
$$\xi$$
 is solenoidal if and only if
$$\lim_{h\searrow 0} \frac{d_{\mathcal{W}}(\mu, (\pi_x + h\pi_v)\#\xi)}{h} = 0.$$



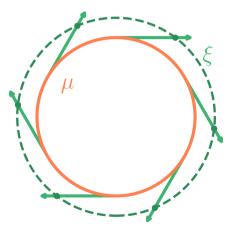
Proposition A measure field
$$\xi$$
 is solenoidal if and only if
$$\lim_{h\searrow 0} \frac{d_{\mathcal{W}}(\mu, (\pi_x + h\pi_v)\#\xi)}{h} = 0.$$



$$\begin{array}{ll} \mbox{Proposition} & \mbox{A measure field } \xi \mbox{ is solenoidal} \\ \mbox{if and only if} & \\ \\ & \lim_{h\searrow 0} \frac{d_{\mathcal{W}}(\mu,(\pi_x+h\pi_v)\#\xi)}{h} = 0. \end{array}$$



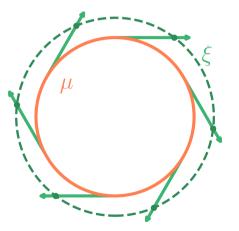
$$\begin{array}{ll} \mbox{Proposition} & \mbox{A measure field } \xi \mbox{ is solenoidal} \\ \mbox{if and only if} & \\ \\ & \lim_{h\searrow 0} \frac{d_{\mathcal{W}}(\mu,(\pi_x+h\pi_v)\#\xi)}{h} = 0. \end{array}$$



Escaping behaviour

$$\begin{array}{l} \mbox{Proposition} \quad \mbox{A measure field } \xi \mbox{ is solenoidal} \\ \mbox{if and only if} \quad \\ \\ \mbox{lim}_{h\searrow 0} \frac{d_{\mathcal{W}}(\mu,(\pi_x+h\pi_v)\#\xi)}{h} = 0. \end{array}$$

In this case, the tangent component of ξ is 0_{μ} .

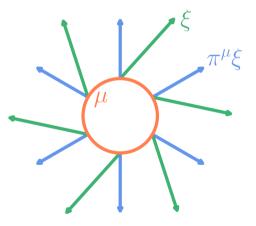


Escaping behaviour

Proposition A measure field
$$\xi$$
 is solenoidal if and only if

$$\lim_{h \searrow 0} \frac{d_{\mathcal{W}}(\mu, (\pi_x + h\pi_v) \# \xi)}{h} = 0.$$

$$\lim_{h\searrow 0}\frac{d_{\mathcal{W}}((\pi_x+h\pi_v)\#\pi^{\mu}\xi,(\pi_x+h\pi_v)\#\xi)}{h}=0.$$

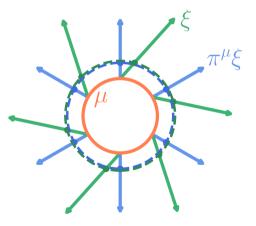


Escaping behaviour

Proposition A measure field
$$\xi$$
 is solenoidal if and only if

$$\lim_{h \searrow 0} \frac{d_{\mathcal{W}}(\mu, (\pi_x + h\pi_v) \# \xi)}{h} = 0.$$

$$\lim_{h\searrow 0}\frac{d_{\mathcal{W}}((\pi_x+h\pi_v)\#\pi^{\mu}\xi,(\pi_x+h\pi_v)\#\xi)}{h}=0.$$

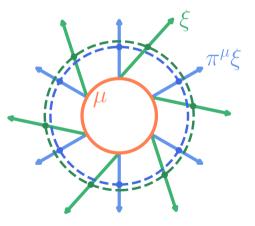


Escaping behaviour

Proposition A measure field
$$\xi$$
 is solenoidal if and only if

$$\lim_{h \searrow 0} \frac{d_{\mathcal{W}}(\mu, (\pi_x + h\pi_v) \# \xi)}{h} = 0.$$

$$\lim_{h\searrow 0}\frac{d_{\mathcal{W}}((\pi_x+h\pi_v)\#\pi^{\mu}\xi,(\pi_x+h\pi_v)\#\xi)}{h}=0.$$

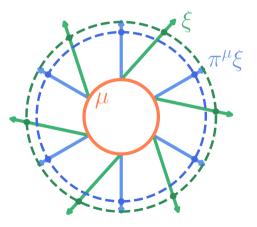


Escaping behaviour

Proposition A measure field
$$\xi$$
 is solenoidal if and only if

$$\lim_{h\searrow 0}\frac{d_{\mathcal{W}}(\mu,(\pi_x+h\pi_v)\#\xi)}{h}=0.$$

$$\lim_{h\searrow 0}\frac{d_{\mathcal{W}}((\pi_x+h\pi_v)\#\pi^{\mu}\xi,(\pi_x+h\pi_v)\#\xi)}{h}=0.$$



Construction of the tangent cone

Let $\mu \in \mathscr{P}_2(\mathbb{R}^d)$. Consider

• the $\xi\in \mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_\mu$ such that

 $s \mapsto (\pi_x + s\pi_v) \# \xi$

is a geodesic;

- the positive cone $\alpha \cdot \xi$ for all $\alpha \ge 0$,
- the completion of the previous cone with respect to W_{μ} .

The resulting set is denoted $\operatorname{Tan}_{\mu}\mathscr{P}_{2}(\mathbb{R}^{d})$.

Quotient construction

Let $\mu \in \mathscr{P}_2(\mathbb{R}^d)$.

Construction of the tangent cone

Let $\mu \in \mathscr{P}_2(\mathbb{R}^d)$. Consider

• the $\xi\in \mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_\mu$ such that

 $s \mapsto (\pi_x + s\pi_v) \# \xi$

is a geodesic;

- the positive cone $\alpha \cdot \xi$ for all $\alpha \ge 0$,
- the completion of the previous cone with respect to W_{μ} .

The resulting set is denoted $\operatorname{Tan}_{\mu}\mathscr{P}_{2}(\mathbb{R}^{d})$.

Quotient construction

Let $\mu \in \mathscr{P}_2(\mathbb{R}^d)$. Define $\xi \sim_{\mu} \zeta$ if

 $d_{\mathcal{W}}((\pi_x + h\pi_v)\#\xi, (\pi_x + h\pi_v)\#\zeta) = o(h).$

Construction of the tangent cone

Let $\mu \in \mathscr{P}_2(\mathbb{R}^d)$. Consider

• the $\xi\in \mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_\mu$ such that

 $s \mapsto (\pi_x + s\pi_v) \# \xi$

is a geodesic;

- the positive cone $\alpha\cdot\xi$ for all $\alpha\geqslant 0,$
- the completion of the previous cone with respect to W_{μ} .

The resulting set is denoted $\operatorname{Tan}_{\mu}\mathscr{P}_{2}(\mathbb{R}^{d})$.

Quotient construction

Let $\mu \in \mathscr{P}_2(\mathbb{R}^d)$. Define $\xi \sim_{\mu} \zeta$ if

 $d_{\mathcal{W}}((\pi_x + h\pi_v)\#\xi, (\pi_x + h\pi_v)\#\zeta) = o(h).$

$$\mathsf{Tan}_\mu \mathscr{P}_2(\mathbb{R}^d) \stackrel{\mathsf{isometry}}{=} \mathscr{P}_2(\mathbb{R}^d)_\mu / \sim_\mu .$$

Construction of the tangent cone

Let $\mu \in \mathscr{P}_2(\mathbb{R}^d)$. Consider

• the $\xi\in \mathscr{P}_2(\mathsf{T}\mathbb{R}^d)_\mu$ such that

 $s \mapsto (\pi_x + s\pi_v) \# \xi$

is a geodesic;

- the positive cone $\alpha \cdot \xi$ for all $\alpha \ge 0$,
- the completion of the previous cone with respect to W_{μ} .

The resulting set is denoted $\operatorname{Tan}_{\mu}\mathscr{P}_{2}(\mathbb{R}^{d})$.

Quotient construction

Let $\mu \in \mathscr{P}_2(\mathbb{R}^d)$. Define $\xi \sim_{\mu} \zeta$ if

 $d_{\mathcal{W}}((\pi_x + h\pi_v)\#\xi, (\pi_x + h\pi_v)\#\zeta) = o(h).$

$$\mathsf{Tan}_\mu \mathscr{P}_2(\mathbb{R}^d) \stackrel{\mathsf{isometry}}{=} \mathscr{P}_2(\mathbb{R}^d)_\mu / \sim_\mu .$$

That's it!

Thank you!

[AGS05] Luigi Ambrosio, Nicola Gigli, and Guiseppe Savaré. Gradient Flows. Lectures in Mathematics ETH Zürich. Birkhäuser-Verlag, Basel, 2005.
[Bre91] Yann Brenier. Polar factorization and monotone rearrangement of vector-valued functions. Communications on Pure and Applied Mathematics, 44(4):375–417, June 1991.
[Gig08] Nicola Gigli. On the Geometry of the Space of Probability Measures Endowed with the Quadratic Optimal Transport Distance. PhD thesis, Scuola Normale Superiore di Pisa, Pisa, 2008.
[Lad87] Ol'ga A. Ladyženskaja.

The Mathematical Theory of Viscous Incompressible Flow. Number 2 in Mathematics and Its Applications. Gordon and Breach, 1987.