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Figure: lterative construction with f(z) = (1 + |z|)~, &; = 0.01/(1 + )2, p(z,y) = |z — y|*.
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e Narrow topology: duality with C,(E).
e Wasserstein topology: duality with Co(E).
The problem
e Aim: minimize a (coercive, Isc, proper) function in the Wasserstein space.
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A solution by Marigonda & Quincampoix [MQ18]
e Use Ekeland to obtain d—minimizers that are exact strict minima of perturbed functions.
e What with Borwein & Preiss?
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