Optimal control problems and Hamilton-Jacobi-Bellman equations in some curved metric spaces

Averil Aussedat supervised by Nicolas Forcadel & Hasnaa Zidani

June 19, 2025

Introduction	Control in CAT(0)	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$ 000	Perspectives

Table of Contents

Introduction

Optimal control in CAT(0) spaces

Hamilton-Jacobi-Bellman equations in CBB(0) spaces

Geometry in the Wasserstein space

	Introduction ●○	Control in CAT(0)	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$	Perspectives O
Introduction					

For $u:[t,T] \rightarrow U$, solve $\dot{y}_s = f(y_s, u(s))$ with $y_t = x$,

	Introduction $\bullet \circ$	Control in CAT(0)	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$	Perspectives
Introduction					

For $u:[t,T] \to U$, solve $\dot{y}_s = f(y_s, u(s))$ with $y_t = x$, minimize $\mathfrak{J}(y_T)$ over admissible $u(\cdot)$.

	Introduction ●○	Control in CAT(0) 00	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$	Perspectives O
Introduction					

For $u:[t,T] \rightarrow U$, solve $\dot{y}_s = f(y_s, u(s))$ with $y_t = x$, minimize $\mathfrak{J}(y_T)$ over admissible $u(\cdot)$.

Of particular interest is the value function

	Introduction ●○	Control in CAT(0) ○○	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$	Perspectives
Introduction					

Optimal control problem: Let T > 0 and $x \in \Omega$. **Hamilton-Jacobi-Bellman equation:**

For $u:[t,T] \to U$, solve $\dot{y}_s = f(y_s, u(s))$ with $y_t = x$, minimize $\mathfrak{J}(y_T)$ over admissible $u(\cdot)$.

Of particular interest is the value function

$$\begin{cases} -\partial_t v(t,x) + H(x, D_x v(t,x)) = 0 & [0,T) \times \Omega, \\ v(T,\cdot) = \mathfrak{J} & \Omega. \end{cases}$$

with Hamiltonian $H(x, p) \coloneqq \sup_{b \in f(x, U)} - p(b)$.

	Introduction ●○	Control in CAT(0) 00	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$	Perspectives ○
Introduction					

Optimal control problem: Let T > 0 and $x \in \Omega$. **Hamilton-Jacobi-Bellman equation:**

For $u:[t,T] \to U$, solve $\dot{y}_s = f(y_s, u(s))$ with $y_t = x$, minimize $\mathfrak{J}(y_T)$ over admissible $u(\cdot)$.

Of particular interest is the value function

$$\begin{cases} -\partial_t v(t,x) + H(x, D_x v(t,x)) = 0 & [0,T) \times \Omega, \\ v(T,\cdot) = \mathfrak{J} & \Omega. \end{cases}$$

with Hamiltonian $H(x, p) \coloneqq \sup_{b \in f(x, U)} - p(b)$. Solution taken in the viscosity sense [CL83].

	Introduction ●○	Control in CAT(0) ○○	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$	Perspectives
Introduction					

For $u:[t,T] \to U$, solve $\dot{y}_s = f(y_s, u(s))$ with $y_t = x$, minimize $\mathfrak{J}(y_T)$ over admissible $u(\cdot)$.

Of particular interest is the value function

 $V(t,x) \coloneqq \inf_{u \in \operatorname{Adm}([t,T];U)} \Im\left(y_T^{t,x,u}\right).$

Hamilton-Jacobi-Bellman equation:

$$\begin{cases} -\partial_t v(t,x) + H(x, D_x v(t,x)) = 0 & [0,T) \times \Omega, \\ v(T,\cdot) = \mathfrak{J} & \Omega. \end{cases}$$

with Hamiltonian $H(x,p) \coloneqq \sup_{b \in f(x,U)} -p(b)$. Solution taken in the viscosity sense [CL83].

General context: Investigation of (such) PDEs on spaces lacking a vector structure.

	Introduction $\bullet \circ$	Control in CAT(0) ○○	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$	Perspectives O
Introduction					

For $u:[t,T] \to U$, solve $\dot{y}_s = f(y_s, u(s))$ with $y_t = x$, minimize $\mathfrak{J}(y_T)$ over admissible $u(\cdot)$.

Of particular interest is the value function

 $V(t,x) \coloneqq \inf_{u \in \operatorname{Adm}([t,T];U)} \Im\left(y_T^{t,x,u}\right).$

Hamilton-Jacobi-Bellman equation:

$$\begin{cases} -\partial_t v(t,x) + H(x, D_x v(t,x)) = 0 & [0,T) \times \Omega, \\ v(T,\cdot) = \mathfrak{J} & \Omega. \end{cases}$$

with Hamiltonian $H(x,p) \coloneqq \sup_{b \in f(x,U)} -p(b)$. Solution taken in the viscosity sense [CL83].

General context: Investigation of (such) PDEs on spaces lacking a vector structure.

Networks & ramified spaces [ACCT13, CM13, CSM13, IMZ13, RZ13, BBC14, LS17, IM17, BC24, JZ23].

	Introduction ●○	Control in CAT(0) 00	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$	Perspectives O
Introduction					

For $u:[t,T] \rightarrow U$, solve $\dot{y}_s = f(y_s, u(s))$ with $y_t = x$, minimize $\mathfrak{J}(y_T)$ over admissible $u(\cdot)$.

Of particular interest is the value function

 $V(t,x) \coloneqq \inf_{u \in \operatorname{Adm}([t,T];U)} \Im\left(y_T^{t,x,u}\right).$

Hamilton-Jacobi-Bellman equation:

$$\begin{cases} -\partial_t v(t,x) + H(x, D_x v(t,x)) = 0 & [0,T) \times \Omega, \\ v(T,\cdot) = \mathfrak{J} & \Omega. \end{cases}$$

with Hamiltonian $H(x,p) \coloneqq \sup_{b \in f(x,U)} -p(b)$. Solution taken in the viscosity sense [CL83].

General context: Investigation of (such) PDEs on spaces lacking a vector structure.

Networks & ramified spaces [ACCT13, CM13, CSM13, IMZ13, RZ13, BBC14, LS17, IM17, BC24, JZ23]. Metric viscosity relying on metric slopes [AF14, GŚ15], one-sided metric slopes [LSZ25] or pathwise conditions [GHN15].

	Introduction ●○	Control in CAT(0) 00	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$	Perspectives O
Introduction					

For $u:[t,T] \rightarrow U$, solve $\dot{y}_s = f(y_s, u(s))$ with $y_t = x$, minimize $\mathfrak{J}(y_T)$ over admissible $u(\cdot)$.

Of particular interest is the value function

 $V(t,x) \coloneqq \inf_{u \in \operatorname{Adm}([t,T];U)} \Im\left(y_T^{t,x,u}\right).$

Hamilton-Jacobi-Bellman equation:

$$\begin{cases} -\partial_t v(t,x) + H(x, D_x v(t,x)) = 0 & [0,T) \times \Omega, \\ v(T,\cdot) = \mathfrak{J} & \Omega. \end{cases}$$

with Hamiltonian $H(x,p) \coloneqq \sup_{b \in f(x,U)} -p(b)$. Solution taken in the viscosity sense [CL83].

General context: Investigation of (such) PDEs on spaces lacking a vector structure.

Networks & ramified spaces [ACCT13, CM13, CSM13, IMZ13, RZ13, BBC14, LS17, IM17, BC24, JZ23]. Metric viscosity relying on metric slopes [AF14, GŚ15], one-sided metric slopes [LSZ25] or pathwise conditions [GHN15]. Control of measures [CQ08, GNT08, HK15, CMNP18, JMQ20, JMQ23, JJZ24] in Wasserstein spaces.

Introduction $\bigcirc \bullet$	Control in CAT(0) 00	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$	Perspectives ○

- Traffic network, one driver: In CAT(0) spaces,
 - optimal control problems, relaxation,

Introduction ○●	Control in CAT(0)	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$	Perspectives

- Traffic network, one driver: In CAT(0) spaces,
 - optimal control problems, relaxation,
 - Hamilton-Jacobi-Bellman formulation based on [JZ23],

Introduction ○●	Control in CAT(0)	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$ 000	Perspectives ○

- Traffic network, one driver: In CAT(0) spaces,
 - optimal control problems, relaxation,
 - Hamilton-Jacobi-Bellman formulation based on [JZ23],
 - numerical analysis of a semi-Lagrangian scheme.

	Intr O●	roduction Co	ontrol in CAT(0) F	IJB in CBB(0)	Some results in $\mathscr{P}_2(\mathbb{R}^d)$ 1000	Perspectives O
--	------------	--------------	--------------------	---------------	--	-------------------

- Traffic network, one driver: In CAT(0) spaces,
 - optimal control problems, relaxation,
 - Hamilton-Jacobi-Bellman formulation based on [JZ23],
 - numerical analysis of a semi-Lagrangian scheme.
- Euclidean space, crowds: In CBB(0) spaces,
 - comparison principle with continuous *H*,

- Traffic network, one driver: In CAT(0) spaces,
 - optimal control problems, relaxation,
 - Hamilton-Jacobi-Bellman formulation based on [JZ23],
 - numerical analysis of a semi-Lagrangian scheme.
- Euclidean space, crowds: In CBB(0) spaces,
 - comparison principle with continuous *H*,
 - applications to control problems in the Wasserstein space.

- Traffic network, one driver: In CAT(0) spaces,
 - optimal control problems, relaxation,
 - Hamilton-Jacobi-Bellman formulation based on [JZ23],
 - numerical analysis of a semi-Lagrangian scheme.
- Euclidean space, crowds: In CBB(0) spaces,
 - comparison principle with continuous *H*,
 - applications to control problems in the Wasserstein space.
- Traffic network, crowds: In $\mathcal{P}_2(network)$, directional differentiability of the squared distance.

On optimal control of populations

- Traffic network, one driver: In CAT(0) spaces,
 - optimal control problems, relaxation,
 - Hamilton-Jacobi-Bellman formulation based on [JZ23],
 - numerical analysis of a semi-Lagrangian scheme.
- Euclidean space, crowds: In CBB(0) spaces,
 - comparison principle with continuous *H*,
 - applications to control problems in the Wasserstein space.
- Traffic network, crowds: In $\mathcal{P}_2(network)$, directional differentiability of the squared distance.

On the geometry of the Wasserstein space

• Orthogonal decompositions: Closed convex cones of centred measure fields.

On optimal control of populations

- Traffic network, one driver: In CAT(0) spaces,
 - optimal control problems, relaxation,
 - Hamilton-Jacobi-Bellman formulation based on [JZ23],
 - numerical analysis of a semi-Lagrangian scheme.
- Euclidean space, crowds: In CBB(0) spaces,
 - comparison principle with continuous *H*,
 - applications to control problems in the Wasserstein space.
- Traffic network, crowds: In $\mathscr{P}_2(network)$, directional differentiability of the squared distance.

On the geometry of the Wasserstein space

- Orthogonal decompositions: Closed convex cones of centred measure fields.
- Classification of tangent fields: Partial results, counterexample in the general case.

On optimal control of populations

- Traffic network, one driver: In CAT(0) spaces,
 - optimal control problems, relaxation,
 - Hamilton-Jacobi-Bellman formulation based on [JZ23],
 - numerical analysis of a semi-Lagrangian scheme.
- Euclidean space, crowds: In CBB(0) spaces,
 - comparison principle with continuous *H*,
 - applications to control problems in the Wasserstein space.
- Traffic network, crowds: In $\mathcal{P}_2(network)$, directional differentiability of the squared distance.

On the geometry of the Wasserstein space

- Orthogonal decompositions: Closed convex cones of centred measure fields.
- Classification of tangent fields: Partial results, counterexample in the general case.
- Decomposition: Following the structure of the tangent cone.

On optimal control of populations

- Traffic network, one driver: In CAT(0) spaces,
 - optimal control problems, relaxation,
 - Hamilton-Jacobi-Bellman formulation based on [JZ23],
 - numerical analysis of a semi-Lagrangian scheme.
- Euclidean space, crowds: In CBB(0) spaces,
 - comparison principle with continuous H,
 - applications to control problems in the Wasserstein space.
- Traffic network, crowds: In $\mathscr{P}_2(network)$, directional differentiability of the squared distance.

Control in CAT(0)

HJB in CBB(0)

On the geometry of the Wasserstein space

- Orthogonal decompositions: Closed convex cones of centred measure fields.
- Classification of tangent fields: Partial results, counterexample in the general case.

Introduction

• Decomposition: Following the structure of the tangent cone.

preprint with H. Zidani

[AJZ24], preprint with C. Hermosilla

Perspectives

[Aus25], one in preparation

On optimal control of populations

- *Traffic network, one driver:* In CAT(0) spaces,
 - optimal control problems, relaxation,
 - Hamilton-Jacobi-Bellman formulation based on [JZ23],
 - numerical analysis of a semi-Lagrangian scheme.
- *Euclidean space, crowds:* In CBB(0) spaces, ٠
 - comparison principle with continuous *H*.
 - applications to control problems in the Wasserstein space.
- Traffic network, crowds: In \mathcal{P}_{2} (network), directional differentiability of the squared distance.

On the geometry of the Wasserstein space

- Orthogonal decompositions: Closed convex cones of centred measure fields.
- *Classification of tangent fields:* Partial results, counterexample in the general case. •
- *Decomposition:* Following the structure of the tangent cone.

preprint with H. Zidani

[AJZ24], preprint with C. Hermosilla

[Aus25]. one in preparation

Perspectives

Introduction \sim

Control in CAT(0)

HJB in CBB(0)

Introduction	Control in CAT(0)	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$ 000	Perspectives O

Table of Contents

Introduction

Optimal control in CAT(0) spaces

Hamilton-Jacobi-Bellman equations in CBB(0) spaces

Geometry in the Wasserstein space

Introduction	Control in CAT(0) ●○	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$ 000	Perspectives O

Let (Ω, d) be a complete CAT(0) space (hyperbolic manifold, metric tree...).

Introduction	Control in CAT(0) ●○	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$	Perspectives O

Let (Ω, d) be a complete CAT(0) space (hyperbolic manifold, metric tree...). Importantly, geodesic space with $d^2(\cdot, z)$ 2-convex for $z \in \Omega$.

Introduction	Control in CAT(0) ●○	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$ 000	Perspectives O

Let (Ω, d) be a complete CAT(0) space (hyperbolic manifold, metric tree...). Importantly, geodesic space with $d^2(\cdot, z)$ 2-convex for $z \in \Omega$.

How to define dynamical systems?

• A curve $y(\cdot)$ may have a right derivative $y_t^+ \in T_{y_t}\Omega$, but difficult to compare between times.

Optimal control in CAT(0) spaces

Let (Ω, d) be a complete CAT(0) space (hyperbolic manifold, metric tree...). Importantly, geodesic space with $d^2(\cdot, z)$ 2-convex for $z \in \Omega$.

How to define dynamical systems?

- A curve $y(\cdot)$ may have a right derivative $y_t^+ \in T_{y_t}\Omega$, but difficult to compare between times.
- Gradient flows in CAT(0) [May98, AKP23]: if $E : \Omega \to \mathbb{R}$ Lipschitz concave, yields $GF_E : \mathbb{R}^+ \times \Omega \to \Omega$.

Let (Ω, d) be a complete CAT(0) space (hyperbolic manifold, metric tree...). Importantly, geodesic space with $d^2(\cdot, z)$ 2-convex for $z \in \Omega$.

Perspectives

How to define dynamical systems?

• A curve $y(\cdot)$ may have a right derivative $y_t^+ \in T_{y_t}\Omega$, but difficult to compare between times.

Introduction

Control in CAT(0)

00

HJB in CBB(0)

- Gradient flows in CAT(0) [May98, AKP23]: if $E : \Omega \to \mathbb{R}$ Lipschitz concave, yields $GF_E : \mathbb{R}^+ \times \Omega \to \Omega$.
- Mutations in metric spaces [Aub99, FL23], with "generalized derivatives" \dot{y}_t .

Let (Ω, d) be a complete CAT(0) space (hyperbolic manifold, metric tree...). Importantly, geodesic space with $d^2(\cdot, z)$ 2-convex for $z \in \Omega$.

How to define dynamical systems?

• A curve $y(\cdot)$ may have a right derivative $y_t^+ \in T_{y_t}\Omega$, but difficult to compare between times.

Introduction

Control in CAT(0)

00

HJB in CBB(0)

- Gradient flows in CAT(0) [May98, AKP23]: if $E : \Omega \to \mathbb{R}$ Lipschitz concave, yields $GF_E : \mathbb{R}^+ \times \Omega \to \Omega$.
- Mutations in metric spaces [Aub99, FL23], with "generalized derivatives" \dot{y}_t .

Def Let \mathcal{E} be a subset of Lipschitz concave functions from Ω to \mathbb{R} , and $f: \Omega \Rightarrow \mathcal{E}$.

Let (Ω, d) be a complete CAT(0) space (hyperbolic manifold, metric tree...). Importantly, geodesic space with $d^2(\cdot, z)$ 2-convex for $z \in \Omega$.

How to define dynamical systems?

• A curve $y(\cdot)$ may have a right derivative $y_t^+ \in T_{y_t}\Omega$, but difficult to compare between times.

Introduction

Control in CAT(0)

00

HJB in CBB(0)

- Gradient flows in CAT(0) [May98, AKP23]: if $E : \Omega \to \mathbb{R}$ Lipschitz concave, yields $GF_E : \mathbb{R}^+ \times \Omega \to \Omega$.
- Mutations in metric spaces [Aub99, FL23], with "generalized derivatives" \dot{y}_t .

Def Let \mathcal{E} be a subset of Lipschitz concave functions from Ω to \mathbb{R} , and $f : \Omega \Rightarrow \mathcal{E}$. A curve $y \in \operatorname{AC}([0,T];\Omega)$ is a solution of $\mathring{y}_t \cap f(y_t) \neq \emptyset$

Let (Ω, d) be a complete CAT(0) space (hyperbolic manifold, metric tree...). Importantly, geodesic space with $d^2(\cdot, z)$ 2-convex for $z \in \Omega$.

How to define dynamical systems?

• A curve $y(\cdot)$ may have a right derivative $y_t^+ \in T_{y_t}\Omega$, but difficult to compare between times.

Introduction

Control in CAT(0)

00

HJB in CBB(0)

- Gradient flows in CAT(0) [May98, AKP23]: if $E : \Omega \to \mathbb{R}$ Lipschitz concave, yields $GF_E : \mathbb{R}^+ \times \Omega \to \Omega$.
- Mutations in metric spaces [Aub99, FL23], with "generalized derivatives" \dot{y}_t .

Def Let \mathcal{E} be a subset of Lipschitz concave functions from Ω to \mathbb{R} , and $f: \Omega \Rightarrow \mathcal{E}$. A curve $y \in \operatorname{AC}([0, T]; \Omega)$ is a solution of $\mathring{y}_t \cap f(y_t) \neq \emptyset$ if for almost any t, there exists $E \in f(y_t)$ such that $d(y_{t+h}, \operatorname{GF}_E(h, y_t)) = o(h)$.

Let (Ω, d) be a complete CAT(0) space (hyperbolic manifold, metric tree...). Importantly, geodesic space with $d^2(\cdot, z)$ 2-convex for $z \in \Omega$.

How to define dynamical systems?

- A curve $y(\cdot)$ may have a right derivative $y_t^+ \in T_{y_t}\Omega$, but difficult to compare between times.
- Gradient flows in CAT(0) [May98, AKP23]: if $E : \Omega \to \mathbb{R}$ Lipschitz concave, yields $GF_E : \mathbb{R}^+ \times \Omega \to \Omega$.
- Mutations in metric spaces [Aub99, FL23], with "generalized derivatives" \dot{y}_t .

Def Let \mathcal{E} be a subset of Lipschitz concave functions from Ω to \mathbb{R} , and $f : \Omega \Rightarrow \mathcal{E}$. A curve $y \in \operatorname{AC}([0, T]; \Omega)$ is a solution of $\mathring{y}_t \cap f(y_t) \neq \emptyset$ if for almost any t, there exists $E \in f(y_t)$ such that

 $d(y_{t+h},\operatorname{GF}_E(h,y_t))=o(h).$

Combining properties of gradient flows and mutations, well-posedness.

sults in $\mathscr{P}_2(\mathbb{R}^a)$

Introduction	Control in CAT(0) ○●	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$	Perspectives O

In \mathbb{R}^d , the set of solutions of $\dot{y}_s \in f(y_s)$ is closed if f(x) is closed and *convex* (Filippov-Aumann).

Introduction	Control in CAT(0) ○●	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$	Perspectives O

In \mathbb{R}^d , the set of solutions of $\dot{y}_s \in f(y_s)$ is closed if f(x) is closed and *convex* (Filippov-Aumann).

Def Define $\overline{\text{conv}} f(x)$ in Lipschitz DC functions endowed with $\|\cdot\|_{1,\infty}$.

Introduction	Control in CAT(0) ○●	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$	Perspectives O

In \mathbb{R}^d , the set of solutions of $\dot{y}_s \in f(y_s)$ is closed if f(x) is closed and *convex* (Filippov-Aumann).

Def Define $\overline{\text{conv}}f(x)$ in Lipschitz DC functions endowed with $\|\cdot\|_{1,\infty}$.

THEOREM Assume $f : \Omega \Rightarrow \mathcal{E}$ locally Lipschitz with linear growth. The set of trajectories of $\overline{\text{conv}}f$ issued from $x \in \Omega$ is compact, and is the closure in AC($[0, T]; \Omega$) of the trajectories of f.

Introduction 00	Control in CAT(0) ○●	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$	Perspectives

In \mathbb{R}^d , the set of solutions of $\dot{y}_s \in f(y_s)$ is closed if f(x) is closed and *convex* (Filippov-Aumann).

Def Define $\overline{\text{conv}} f(x)$ in Lipschitz DC functions endowed with $\|\cdot\|_{1,\infty}$.

THEOREM Assume $f : \Omega \Rightarrow \mathcal{E}$ locally Lipschitz with linear growth. The set of trajectories of $\overline{\text{conv}}f$ issued from $x \in \Omega$ is compact, and is the closure in AC([0, T]; \Omega) of the trajectories of f.

Usual argument:

- consider a sequence $(y_n, \dot{y}_n)_n$ of solutions,
- extract of a strong-weak limit (*y*, *b*),
- show that $y_t = x + \int_0^t b_s ds$ and $b_s \in \overline{\text{conv}}f(y_s)$.
| Introduction | Control in CAT(0)
○● | HJB in CBB(0)
00 | Some results in $\mathscr{P}_2(\mathbb{R}^d)$ | Perspectives
O |
|--------------|-------------------------|---------------------|---|-------------------|
| | | | | |

Existence in the optimal control problem

In \mathbb{R}^d , the set of solutions of $\dot{y}_s \in f(y_s)$ is closed if f(x) is closed and *convex* (Filippov-Aumann).

Def Define $\overline{\text{conv}}f(x)$ in Lipschitz DC functions endowed with $\|\cdot\|_{1,\infty}$.

THEOREM Assume $f : \Omega \Rightarrow \mathcal{E}$ locally Lipschitz with linear growth. The set of trajectories of $\overline{\text{conv}}f$ issued from $x \in \Omega$ is compact, and is the closure in AC($[0, T]; \Omega$) of the trajectories of f.

Usual argument:

- consider a sequence $(y_n, \dot{y}_n)_n$ of solutions,
- extract of a strong-weak limit (*y*, *b*),
- show that $y_t = x + \int_0^t b_s ds$ and $b_s \in \overline{\text{conv}}f(y_s)$.

Here $y_n^+(s) \in T_{y_n(s)}\Omega$, not Hilbert.

Existence in the optimal control problem

In \mathbb{R}^d , the set of solutions of $\dot{y}_s \in f(y_s)$ is closed if f(x) is closed and *convex* (Filippov-Aumann).

Def Define $\overline{\text{conv}}f(x)$ in Lipschitz DC functions endowed with $\|\cdot\|_{1,\infty}$.

THEOREM Assume $f : \Omega \Rightarrow \mathcal{E}$ locally Lipschitz with linear growth. The set of trajectories of $\overline{\text{conv}}f$ issued from $x \in \Omega$ is compact, and is the closure in AC([0, T]; \Omega) of the trajectories of f.

Usual argument:

- consider a sequence $(y_n, \dot{y}_n)_n$ of solutions,
- extract of a strong-weak limit (*y*, *b*),
- show that $y_t = x + \int_0^t b_s ds$ and $b_s \in \overline{\text{conv}}f(y_s)$.

Here $y_n^+(s) \in T_{y_n(s)}\Omega$, not Hilbert. Reformulation:

Proposition For such f, y solves $\mathring{y}_t \cap f(y_t) \neq \emptyset$ iff some measurable selection $(E_t)_t$ of $t \mapsto f(y_t)$ satisfies

$$\frac{d}{dt}\frac{d^2(y_t,z)}{2} \leq E_t(y_t) - E_t(z) \quad \forall z, \text{ for a.e. } t.$$

Existence in the optimal control problem

In \mathbb{R}^d , the set of solutions of $\dot{y}_s \in f(y_s)$ is closed if f(x) is closed and *convex* (Filippov-Aumann).

Def Define $\overline{\text{conv}}f(x)$ in Lipschitz DC functions endowed with $\|\cdot\|_{1,\infty}$.

THEOREM Assume $f : \Omega \Rightarrow \mathcal{E}$ locally Lipschitz with linear growth. The set of trajectories of $\overline{\text{conv}}f$ issued from $x \in \Omega$ is compact, and is the closure in AC([0, T]; \Omega) of the trajectories of f.

Usual argument:

- consider a sequence $(y_n, \dot{y}_n)_n$ of solutions,
- extract of a strong-weak limit (*y*, *b*),
- show that $y_t = x + \int_0^t b_s ds$ and $b_s \in \overline{\text{conv}}f(y_s)$.

Here $y_n^+(s) \in T_{y_n(s)}\Omega$, not Hilbert. Reformulation:

Proposition For such f, y solves $\mathring{y}_t \cap f(y_t) \neq \emptyset$ iff some measurable selection $(E_t)_t$ of $t \mapsto f(y_t)$ satisfies

$$\frac{d}{dt}\frac{d^2(y_t,z)}{2} \leq E_t(y_t) - E_t(z) \quad \forall z, \text{ for a.e. } t.$$

Introduction	Control in CAT(0) 00	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$	Perspectives O

Table of Contents

Introduction

Optimal control in CAT(0) spaces

Hamilton-Jacobi-Bellman equations in CBB(0) spaces

Geometry in the Wasserstein space

Perspectives

Introduction	Control in CAT(0) 00	HJB in CBB(0) ●○	Some results in $\mathscr{P}_2(\mathbb{R}^d)$ 000	Perspectives O

Let now (Ω, d) have curvature bounded from below, as spheres, quotients of Hilberts by isometries...

Introduction	Control in CAT(0) 00	HJB in CBB(0) ●○	Some results in $\mathscr{P}_2(\mathbb{R}^d)$	Perspectives ○

Let now (Ω, d) have curvature bounded from below, as spheres, quotients of Hilberts by isometries... Importantly, $d^2(\cdot, z)$ semiconcave for $z \in \Omega$.

Introduction	Control in CAT(0) 00	HJB in CBB(0) ●○	Some results in $\mathscr{P}_2(\mathbb{R}^d)$ 000	Perspectives O

Let now (Ω, d) have curvature bounded from below, as spheres, quotients of Hilberts by isometries... Importantly, $d^2(\cdot, z)$ semiconcave for $z \in \Omega$. Aim: give meaning to

(HJ)
$$-\partial_t v(t,x) + H(x, D_x v(t,x)) = 0, \qquad v(T, \cdot) = \mathfrak{J}.$$

Introduction	Control in CAT(0) 00	HJB in CBB(0) ●○	Some results in $\mathscr{P}_2(\mathbb{R}^d)$	Perspectives

Let now (Ω, d) have curvature bounded from below, as spheres, quotients of Hilberts by isometries... Importantly, $d^2(\cdot, z)$ semiconcave for $z \in \Omega$. Aim: give meaning to

(HJ)
$$-\partial_t v(t,x) + H(x, D_x v(t,x)) = 0, \qquad v(T, \cdot) = \mathfrak{J}.$$

Here

• *H* is defined on pairs (x, p), with $x \in \Omega$ and $p : T_x \Omega \to \mathbb{R}$ Lipschitz and positively homogeneous,

Introduction	Control in CAT(0) 00	HJB in CBB(0) ●○	Some results in $\mathscr{P}_2(\mathbb{R}^d)$	Perspectives

Let now (Ω, d) have curvature bounded from below, as spheres, quotients of Hilberts by isometries... Importantly, $d^2(\cdot, z)$ semiconcave for $z \in \Omega$. Aim: give meaning to

(HJ)
$$-\partial_t v(t,x) + H(x, D_x v(t,x)) = 0, \qquad v(T, \cdot) = \mathfrak{J}.$$

Here

- *H* is defined on pairs (x, p), with $x \in \Omega$ and $p : T_x \Omega \to \mathbb{R}$ Lipschitz and positively homogeneous,
- $D_x v : T_x \Omega \to \mathbb{R}$ is the application of directional derivatives.

Let now (Ω, d) have curvature bounded from below, as spheres, quotients of Hilberts by isometries... Importantly, $d^2(\cdot, z)$ semiconcave for $z \in \Omega$. Aim: give meaning to

(HJ)
$$-\partial_t v(t,x) + H(x, D_x v(t,x)) = 0, \qquad v(T, \cdot) = \mathfrak{J}.$$

Here

- *H* is defined on pairs (x, p), with $x \in \Omega$ and $p : T_x \Omega \to \mathbb{R}$ Lipschitz and positively homogeneous,
- $D_x v : T_x \Omega \to \mathbb{R}$ is the application of directional derivatives.

Def A locally uniformly continuous function v is a viscosity solution of (HJ) if it is both a **subsolution:** if φ is C^2 in time, **semiconcave** in space, and touches v from **above** at (t, x),

 $-\partial_t \varphi(t,x) + H(x, D_x \varphi(t,x)) \leq 0.$

Let now (Ω, d) have curvature bounded from below, as spheres, quotients of Hilberts by isometries... Importantly, $d^2(\cdot, z)$ semiconcave for $z \in \Omega$. Aim: give meaning to

(HJ)
$$-\partial_t v(t,x) + H(x, D_x v(t,x)) = 0, \qquad v(T, \cdot) = \mathfrak{J}.$$

Here

- *H* is defined on pairs (x, p), with $x \in \Omega$ and $p : T_x \Omega \to \mathbb{R}$ Lipschitz and positively homogeneous,
- $D_x v : T_x \Omega \to \mathbb{R}$ is the application of directional derivatives.

Def A locally uniformly continuous function v is a viscosity solution of (HJ) if it is both a **supersolution:** if φ is C^2 in time, **semiconvex** in space, and touches v from **below** at (t, x),

 $-\partial_t \varphi(t,x) + H(x, D_x \varphi(t,x)) \ge 0.$

Let now (Ω, d) have curvature bounded from below, as spheres, quotients of Hilberts by isometries... Importantly, $d^2(\cdot, z)$ semiconcave for $z \in \Omega$. Aim: give meaning to

(HJ)
$$-\partial_t v(t,x) + H(x, D_x v(t,x)) = 0, \qquad v(T, \cdot) = \mathfrak{J}.$$

Here

- *H* is defined on pairs (x, p), with $x \in \Omega$ and $p : T_x \Omega \to \mathbb{R}$ Lipschitz and positively homogeneous,
- $D_x v : T_x \Omega \to \mathbb{R}$ is the application of directional derivatives.

Def A locally uniformly continuous function v is a viscosity solution of (HJ) if it is both a **supersolution:** if φ is C^2 in time, **semiconvex** in space, and touches v from **below** at (t, x),

 $-\partial_t \varphi(t,x) + H(x, D_x \varphi(t,x)) \ge 0.$

This definition supports a strong comparison principle (Theorem 3.1.12, [AJZ24]).

Introduction	Control in CAT(0) 00	HJB in CBB(0) ○●	Some results in $\mathscr{P}_2(\mathbb{R}^d)$	Perspectives ○

 $\left(\mathscr{P}_2(\mathbb{R}^d), d_{\mathcal{W}}
ight)$ is CBB(0), so we can turn to the Mayer problem

Minimize $\mathfrak{J}(\mu_T^{0,v,u})$ over $u \in L^1(0,T;U)$, subject to $\partial_s \mu_s + \operatorname{div} (f[\mu_s, u(s)] \cdot \mu_s) = 0$ and $\mu_0 = v$.

Introduction	Control in CAT(0) 00	HJB in CBB(0) ○●	Some results in $\mathscr{P}_2(\mathbb{R}^d)$ 000	Perspectives O

 $\left(\mathscr{P}_2(\mathbb{R}^d), d_{\mathcal{W}}
ight)$ is CBB(0), so we can turn to the Mayer problem

 $\text{Minimize } \mathfrak{J}(\mu_T^{0,v,u}) \text{ over } u \in L^1(0,T;U), \text{ subject to } \partial_s \mu_s + \text{div} \left(f[\mu_s,u(s)] \cdot \mu_s\right) = 0 \text{ and } \mu_0 = v.$

Existing approaches: L-differentiable functions, semidifferentials, metric tools.

Introduction	Control in CAT(0) 00	HJB in CBB(0) ○●	Some results in $\mathscr{P}_2(\mathbb{R}^d)$ 000	Perspectives O

 $\left(\mathscr{P}_2(\mathbb{R}^d), d_{\mathcal{W}}
ight)$ is CBB(0), so we can turn to the Mayer problem

 $\text{Minimize } \mathfrak{J}(\mu_T^{0,v,u}) \text{ over } u \in L^1(0,T;U), \text{ subject to } \partial_s \mu_s + \text{div} \left(f[\mu_s,u(s)] \cdot \mu_s\right) = 0 \text{ and } \mu_0 = v.$

Existing approaches: L-differentiable functions, semidifferentials, metric tools.

Issue: the dynamic $f[\mu, u]$ is *a priori* not valued in the geometric tangent cone T_{μ} .

Introduction	Control in CAT(0) 00	HJB in CBB(0) ○●	Some results in $\mathscr{P}_2(\mathbb{R}^d)$ 000	Perspectives O

 $\left(\mathscr{P}_2(\mathbb{R}^d), d_{\mathcal{W}}
ight)$ is CBB(0), so we can turn to the Mayer problem

 $\text{Minimize } \mathfrak{J}(\mu_T^{0,v,u}) \text{ over } u \in L^1(0,T;U), \text{ subject to } \partial_s \mu_s + \text{div} \left(f[\mu_s,u(s)] \cdot \mu_s\right) = 0 \text{ and } \mu_0 = v.$

Existing approaches: L-differentiable functions, semidifferentials, metric tools.

Issue: the dynamic $f[\mu, u]$ is *a priori* not valued in the geometric tangent cone T_{μ} .

Lemma For any $b \in L^2_{\mu}(\mathbb{R}^d; \mathbb{T}\mathbb{R}^d)$, there exists $b' \in \mathbb{T}_{\mu} \cap L^2_{\mu}$ such that $\lim_{h \searrow 0} \frac{d_{\mathcal{W}}((id+hb)_{\#}\mu, (id+hb')_{\#}\mu)}{h} = 0.$

 $\left(\mathscr{P}_2(\mathbb{R}^d), d_{\mathcal{W}}
ight)$ is CBB(0), so we can turn to the Mayer problem

Minimize $\mathfrak{J}(\mu_T^{0,v,u})$ over $u \in L^1(0,T;U)$, subject to $\partial_s \mu_s + \operatorname{div}(f[\mu_s, u(s)] \cdot \mu_s) = 0$ and $\mu_0 = v$.

Existing approaches: L-differentiable functions, semidifferentials, metric tools.

Issue: the dynamic $f[\mu, u]$ is *a priori* not valued in the geometric tangent cone T_{μ} .

Lemma For any $b \in L^2_{\mu}(\mathbb{R}^d; \mathbb{T}\mathbb{R}^d)$, there exists $b' \in \mathbb{T}_{\mu} \cap L^2_{\mu}$ such that $\lim_{h \searrow 0} \frac{d_{\mathcal{W}}((id+hb)_{\#}\mu, (id+hb')_{\#}\mu)}{h} = 0.$ **THEOREM** Assume f, \mathfrak{J} Lipschitz. Then the value function V is the unique viscosity solution of

$$\begin{cases} -\partial_t v(t,\mu) + H\left(\mu, D_\mu v(t,\mu)\right) = 0 \\ v(T,\cdot) = \mathfrak{J} \end{cases}$$

where
$$H(\mu, p) \coloneqq \sup_{b \in \overline{\operatorname{conv}} f[\mu, U]} - p(\pi_T^{\mu}b)$$
.

Introduction	Control in CAT(0) 00	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$ 000	Perspectives O

Table of Contents

Introduction

Optimal control in CAT(0) spaces

Hamilton-Jacobi-Bellman equations in CBB(0) spaces

Geometry in the Wasserstein space

Perspectives

Introduction	Control in CAT(0) 00	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$	Perspectives O

• Metric scalar product. Fix $\mu \in \mathscr{P}_2(\mathbb{R}^d)$. For $\xi, \zeta \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$,

Introduction	Control in CAT(0)	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$	Perspectives O

• Metric scalar product. Fix $\mu \in \mathscr{P}_2(\mathbb{R}^d)$. For $\xi, \zeta \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$, let

 $\Gamma_{\mu}(\xi,\zeta) \coloneqq \left\{ \alpha = \alpha(dx, dv, dw) \mid (\pi_x, \pi_v)_{\#} \alpha = \xi, \ (\pi_x, \pi_w)_{\#} \alpha = \zeta \right\},$

Introduction	Control in CAT(0)	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$ $\circ \circ \circ$	Perspectives ○

• Metric scalar product. Fix $\mu \in \mathscr{P}_2(\mathbb{R}^d)$. For $\xi, \zeta \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$, let

 $\Gamma_{\mu}(\xi,\zeta) \coloneqq \left\{ \alpha = \alpha(dx, dv, dw) \mid (\pi_x, \pi_v)_{\#} \alpha = \xi, \ (\pi_x, \pi_w)_{\#} \alpha = \zeta \right\},$

Introduction	Control in CAT(0)	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$ $\circ \circ \circ$	Perspectives ○

• Metric scalar product. Fix $\mu \in \mathscr{P}_2(\mathbb{R}^d)$. For $\xi, \zeta \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$, let

$$\begin{split} &\Gamma_{\mu}(\xi,\zeta) \coloneqq \left\{ \alpha = \alpha(dx,dv,dw) \mid (\pi_{x},\pi_{v})_{\#}\alpha = \xi, \ (\pi_{x},\pi_{w})_{\#}\alpha = \zeta \right\}, \\ &W_{\mu}^{2}(\xi,\zeta) \coloneqq \inf_{\alpha \in \Gamma_{\mu}(\xi,\zeta)} \int_{(x,v,w)} |v-w|^{2} d\alpha, \end{split}$$

Introduction	Control in CAT(0) 00	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$ $\bullet \circ \circ$	Perspectives O

• Metric scalar product. Fix $\mu \in \mathscr{P}_2(\mathbb{R}^d)$. For $\xi, \zeta \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$, let

$$\begin{split} &\Gamma_{\mu}(\xi,\zeta) \coloneqq \left\{ \alpha = \alpha(dx,dv,dw) \mid (\pi_{x},\pi_{v})_{\#}\alpha = \xi, \ (\pi_{x},\pi_{w})_{\#}\alpha = \zeta \right\}, \\ &W_{\mu}^{2}(\xi,\zeta) \coloneqq \inf_{\alpha \in \Gamma_{\mu}(\xi,\zeta)} \int_{(x,v,w)} |v-w|^{2}d\alpha, \\ &\langle \xi,\zeta \rangle_{\mu} \coloneqq \frac{1}{2} \left[\|\xi\|_{\mu}^{2} + \|\zeta\|_{\mu}^{2} - W_{\mu}^{2}(\xi,\zeta) \right] = \sup_{\alpha \in \Gamma_{\mu}(\xi,\zeta)} \int_{(x,v,w)} \langle v,w \rangle \, d\alpha. \end{split}$$

Introduction	Control in CAT(0)	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$ $\bullet \circ \circ$	Perspectives O
00	00	00	000	

• Metric scalar product. Fix $\mu \in \mathscr{P}_2(\mathbb{R}^d)$. For $\xi, \zeta \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$, let

$$\begin{split} &\Gamma_{\mu}(\xi,\zeta) \coloneqq \left\{ \alpha = \alpha(dx,dv,dw) \mid (\pi_{x},\pi_{v})_{\#}\alpha = \xi, \ (\pi_{x},\pi_{w})_{\#}\alpha = \zeta \right\}, \\ &W_{\mu}^{2}(\xi,\zeta) \coloneqq \inf_{\alpha \in \Gamma_{\mu}(\xi,\zeta)} \int_{(x,v,w)} |v-w|^{2}d\alpha, \\ &\langle \xi,\zeta \rangle_{\mu} \coloneqq \frac{1}{2} \left[\|\xi\|_{\mu}^{2} + \|\zeta\|_{\mu}^{2} - W_{\mu}^{2}(\xi,\zeta) \right] = \sup_{\alpha \in \Gamma_{\mu}(\xi,\zeta)} \int_{(x,v,w)} \langle v,w \rangle \, d\alpha. \end{split}$$

 $\begin{array}{ll} \mathbf{Def} & \text{The tangent cone } \mathbf{Tan}_{\mu} \text{ is} \\ \\ \hline \\ \overline{\left\{ \lambda \cdot \xi \in \mathscr{P}_2(\mathrm{T} \mathbb{R}^d)_{\mu} \mid (\pi_x, \pi_x + \pi_v)_{\#} \xi \text{ opt, } \lambda \geq 0 \right\}}^{W_{\mu}}. \end{array}$

Def The solenoidal cone \mathbf{Sol}_{μ} is

$$\left\{ \zeta \in \mathscr{P}_2(\mathbf{T}\mathbb{R}^d)_{\mu} \mid \langle \xi, \zeta \rangle_{\mu} = 0 \quad \forall \xi \in \mathbf{Tan}_{\mu} \right\}.$$

	Introduction	Control in CAT(0) 00	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$ $\circ \bullet \circ$	Perspectives
Classification					

Denote by $h \mapsto \exp_{\mu}(h \cdot \xi) \coloneqq (\pi_x + h\pi_v)_{\#}\xi$ the exponential of $\xi \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$.

	Introduction	Control in CAT(0) 00	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$ $\odot \bullet \odot$	Perspectives O
Classification					

Denote by $h \mapsto \exp_{\mu}(h \cdot \xi) \coloneqq (\pi_x + h\pi_v)_{\#}\xi$ the exponential of $\xi \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$.

$$\begin{aligned} & \textbf{Proposition} \quad \text{If } \xi = f_{\#}\mu \text{ for } f \in L^{2}_{\mu}(\mathbb{R}^{d};\mathbb{T}\mathbb{R}^{d}), \\ & (\text{E}_{\text{T}}) \quad \xi \in \textbf{Tan}_{\mu} \quad \Leftrightarrow \quad \lim_{h \searrow 0} \frac{d_{\mathcal{W}}(\mu, \exp_{\mu}(h \cdot \xi))}{h} = \|\xi\|_{\mu} \coloneqq \sqrt{\int |v|^{2} d\xi}, \\ & (\text{E}_{\text{S}}) \quad \xi \in \textbf{Sol}_{\mu} \quad \Leftrightarrow \quad \lim_{h \searrow 0} \frac{d_{\mathcal{W}}(\mu, \exp_{\mu}(h \cdot \xi))}{h} = 0. \end{aligned}$$

	Introduction	Control in CAT(0) ○○	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$ $\circ \bullet \circ$	Perspectives O
Classification					

Denote by $h \mapsto \exp_{\mu}(h \cdot \xi) := (\pi_x + h\pi_v)_{\#}\xi$ the exponential of $\xi \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$.

	Introduction	Control in CAT(0) 00	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$ $\circ \bullet \circ$	Perspectives
Classification					

Denote by $h \mapsto \exp_{\mu}(h \cdot \xi) := (\pi_x + h\pi_v)_{\#}\xi$ the exponential of $\xi \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$.

	Introduction	Control in CAT(0) 00	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$ $\circ \bullet \circ$	Perspectives O
Classification					

Denote by $h \mapsto \exp_{\mu}(h \cdot \xi) \coloneqq (\pi_x + h\pi_v)_{\#}\xi$ the exponential of $\xi \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$.

$$\begin{aligned} \mathbf{Proposition} & \text{If } \xi = f_{\#}\mu \text{ for } f \in L^2_{\mu}(\mathbb{R}^d; \mathbb{T}\mathbb{R}^d), \\ (\mathbf{E}_{\mathrm{T}}) & \xi \in \mathbf{Tan}_{\mu} \quad \Leftrightarrow \quad \lim_{h \searrow 0} \frac{d_{\mathcal{W}}(\mu, \exp_{\mu}(h \cdot \xi))}{h} = \|\xi\|_{\mu} := \sqrt{\int |v|^2 d\xi}, \\ (\mathbf{E}_{\mathrm{S}}) & \xi \in \mathbf{Sol}_{\mu} \quad \Leftrightarrow \quad \lim_{h \searrow 0} \frac{d_{\mathcal{W}}(\mu, \exp_{\mu}(h \cdot \xi))}{h} = 0. \end{aligned}$$

	Introduction 00	Control in CAT(0)	HJB in CBB(0)	Some results in $\mathscr{P}_2(\mathbb{R}^d)$ $\odot \bullet \odot$	Perspectives
Classification					

Denote by $h \mapsto \exp_{\mu}(h \cdot \xi) := (\pi_x + h\pi_v)_{\#}\xi$ the exponential of $\xi \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$.

Yields $d_{\mathcal{W}}(\exp_{\mu}(h \cdot f_{\#}\mu), \exp_{\mu}(h \cdot \pi_{T}^{\mu}f_{\#}\mu)) = o(h)$, hence the post-it lemma.

	Introduction 00	Control in CAT(0)	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$ $\circ \bullet \circ$	Perspectives O
Classification					

Denote by $h \mapsto \exp_{\mu}(h \cdot \xi) \coloneqq (\pi_x + h\pi_v)_{\#}\xi$ the exponential of $\xi \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$.

Yields $d_{\mathcal{W}}(\exp_{\mu}(h \cdot f_{\#}\mu), \exp_{\mu}(h \cdot \pi^{\mu}_{T}f_{\#}\mu)) = o(h)$, hence the post-it lemma.

Further precisions in dimension one:

• (E_T) and (E_S) hold if μ is purely atomic or absolutely continuous.

	Introduction 00	Control in CAT(0)	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$ $\circ \bullet \circ$	Perspectives O
Classification					

Denote by $h \mapsto \exp_{\mu}(h \cdot \xi) \coloneqq (\pi_x + h\pi_v)_{\#}\xi$ the exponential of $\xi \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$.

Yields $d_{\mathcal{W}}(\exp_{\mu}(h \cdot f_{\#}\mu), \exp_{\mu}(h \cdot \pi_{T}^{\mu}f_{\#}\mu)) = o(h)$, hence the post-it lemma.

Further precisions in dimension one:

- (E_T) and (E_S) hold if μ is purely atomic or absolutely continuous.
- Neither (E_T) or (E_S) holds in general.

Introduction	Control in CAT(0) 00	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$ $\circ \circ \bullet$	Perspectives O

Remark If $\xi, \zeta \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$ are centred, $\langle \xi, \zeta \rangle_{\mu} = 0$ if and only if $\langle \xi_x, \zeta_x \rangle_{\delta_x} = 0 \ \mu$ -a.e..

Introduction	Control in CAT(0)	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$ $\circ \circ \bullet$	Perspectives O

Remark If $\xi, \zeta \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$ are centred, $\langle \xi, \zeta \rangle_{\mu} = 0$ if and only if $\langle \xi_x, \zeta_x \rangle_{\delta_x} = 0 \ \mu$ -a.e..

Indeed, choosing centred disintegrations,

$$0 = \langle \xi, \zeta \rangle_{\mu} = \int_{x \in \mathbb{R}^d} \underbrace{\langle \xi_x, \zeta_x \rangle_{\delta_x}}_{\geq 0} d\mu.$$

Remark If $\xi, \zeta \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$ are centred, $\langle \xi, \zeta \rangle_{\mu} = 0$ if and only if $\langle \xi_x, \zeta_x \rangle_{\delta_x} = 0 \ \mu$ -a.e..

Indeed, choosing centred disintegrations,

$$0 = \langle \xi, \zeta \rangle_{\mu} = \int_{x \in \mathbb{R}^d} \underbrace{\langle \xi_x, \zeta_x \rangle_{\delta_x}}_{\geq 0} d\mu.$$

Proposition Let $\mu = \sum_k m_k \mu^k$, with μ^k mutually singular.

Remark If $\xi, \zeta \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$ are centred, $\langle \xi, \zeta \rangle_{\mu} = 0$ if and only if $\langle \xi_x, \zeta_x \rangle_{\delta_x} = 0 \ \mu$ -a.e..

Indeed, choosing centred disintegrations,

$$0 = \langle \xi, \zeta \rangle_{\mu} = \int_{x \in \mathbb{R}^d} \underbrace{\langle \xi_x, \zeta_x \rangle_{\delta_x}}_{\geq 0} d\mu.$$

Proposition Let $\mu = \sum_k m_k \mu^k$, with μ^k mutually singular. Then • $\zeta \in \mathbf{Sol}^0_{\mu}$ iff $\zeta = \sum_k m_k \zeta^k$, with $\zeta^k \in \mathbf{Sol}^0_{\mu^k}$,
Remark If $\xi, \zeta \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$ are centred, $\langle \xi, \zeta \rangle_{\mu} = 0$ if and only if $\langle \xi_x, \zeta_x \rangle_{\delta_x} = 0 \ \mu$ -a.e..

Indeed, choosing centred disintegrations,

$$0 = \langle \xi, \zeta \rangle_{\mu} = \int_{x \in \mathbb{R}^d} \underbrace{\langle \xi_x, \zeta_x \rangle_{\delta_x}}_{\geq 0} d\mu.$$

•
$$\zeta \in \mathbf{Sol}^0_\mu$$
 iff $\zeta = \sum_k m_k \zeta^k$, with $\zeta^k \in \mathbf{Sol}^0_{\mu^k}$,

•
$$\xi \in \operatorname{Tan}_{\mu}^{0}$$
 iff $\xi = \sum_{k} m_{k} \xi^{k}$, with $\xi^{k} \in \operatorname{Tan}_{\mu^{k}}^{0}$.

Remark If $\xi, \zeta \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$ are centred, $\langle \xi, \zeta \rangle_{\mu} = 0$ if and only if $\langle \xi_x, \zeta_x \rangle_{\delta_x} = 0 \ \mu$ -a.e..

Indeed, choosing centred disintegrations,

$$0 = \langle \xi, \zeta \rangle_{\mu} = \int_{x \in \mathbb{R}^d} \underbrace{\langle \xi_x, \zeta_x \rangle_{\delta_x}}_{\geq 0} d\mu.$$

•
$$\zeta \in \mathbf{Sol}^0_\mu$$
 iff $\zeta = \sum_k m_k \zeta^k$, with $\zeta^k \in \mathbf{Sol}^0_{\mu^k}$,

•
$$\xi \in \mathbf{Tan}^0_\mu$$
 iff $\xi = \sum_k m_k \xi^k$, with $\xi^k \in \mathbf{Tan}^0_{\mu^k}$.

Remark If $\xi, \zeta \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$ are centred, $\langle \xi, \zeta \rangle_{\mu} = 0$ if and only if $\langle \xi_x, \zeta_x \rangle_{\delta_x} = 0 \ \mu$ -a.e..

Indeed, choosing centred disintegrations,

$$0 = \langle \xi, \zeta \rangle_{\mu} = \int_{x \in \mathbb{R}^d} \underbrace{\langle \xi_x, \zeta_x \rangle_{\delta_x}}_{\geq 0} d\mu.$$

•
$$\zeta \in \mathbf{Sol}^0_\mu$$
 iff $\zeta = \sum_k m_k \zeta^k$, with $\zeta^k \in \mathbf{Sol}^0_{\mu^k}$,

•
$$\xi \in \mathbf{Tan}^0_\mu$$
 iff $\xi = \sum_k m_k \xi^k$, with $\xi^k \in \mathbf{Tan}^0_{\mu^k}$.

Remark If $\xi, \zeta \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$ are centred, $\langle \xi, \zeta \rangle_{\mu} = 0$ if and only if $\langle \xi_x, \zeta_x \rangle_{\delta_x} = 0 \ \mu$ -a.e..

Indeed, choosing centred disintegrations,

$$0 = \langle \xi, \zeta \rangle_{\mu} = \int_{x \in \mathbb{R}^d} \underbrace{\langle \xi_x, \zeta_x \rangle_{\delta_x}}_{\geq 0} d\mu.$$

•
$$\zeta \in \mathbf{Sol}^0_\mu$$
 iff $\zeta = \sum_k m_k \zeta^k$, with $\zeta^k \in \mathbf{Sol}^0_{\mu^k}$,

•
$$\xi \in \operatorname{Tan}_{\mu}^{0}$$
 iff $\xi = \sum_{k} m_{k} \xi^{k}$, with $\xi^{k} \in \operatorname{Tan}_{\mu^{k}}^{0}$.

Remark If $\xi, \zeta \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$ are centred, $\langle \xi, \zeta \rangle_{\mu} = 0$ if and only if $\langle \xi_x, \zeta_x \rangle_{\delta_x} = 0 \ \mu$ -a.e..

Indeed, choosing centred disintegrations,

$$0 = \langle \xi, \zeta \rangle_{\mu} = \int_{x \in \mathbb{R}^d} \underbrace{\langle \xi_x, \zeta_x \rangle_{\delta_x}}_{\geq 0} d\mu.$$

Proposition Let $\mu = \sum_{k} m_{k} \mu^{k}$, with μ^{k} mutually singular. Then • $\zeta \in \mathbf{Sol}_{\mu}^{0}$ iff $\zeta = \sum_{k} m_{k} \zeta^{k}$, with $\zeta^{k} \in \mathbf{Sol}_{\mu^{k}}^{0}$, • $\xi \in \mathbf{Tan}_{\mu}^{0}$ iff $\xi = \sum_{k} m_{k} \xi^{k}$, with $\xi^{k} \in \mathbf{Tan}_{\mu^{k}}^{0}$.

 $\frac{D_1 / / / / / / }{\mu}$

Agree that $\mathcal{A} \subset \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)^0_{\mu}$ has dim *k* if there exists $x \mapsto D_k(x) \subset \mathbb{T}_x \mathbb{R}^d$ vector spaces of dim *k* such that $\xi \in \mathcal{A}$ if and only if ξ -a.e. $v \in D_k(x)$.

Remark If $\xi, \zeta \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$ are centred, $\langle \xi, \zeta \rangle_{\mu} = 0$ if and only if $\langle \xi_x, \zeta_x \rangle_{\delta_x} = 0 \ \mu$ -a.e..

Indeed, choosing centred disintegrations,

$$0 = \langle \xi, \zeta \rangle_{\mu} = \int_{x \in \mathbb{R}^d} \underbrace{\langle \xi_x, \zeta_x \rangle_{\delta_x}}_{\geq 0} d\mu.$$

Proposition Let $\mu = \sum_k m_k \mu^k$, with μ^k mutually singular. Then • $\zeta \in \mathbf{Sol}^0_{\mu}$ iff $\zeta = \sum_k m_k \zeta^k$, with $\zeta^k \in \mathbf{Sol}^0_{\mu^k}$,

•
$$\xi \in \mathbf{Tan}^0_\mu$$
 iff $\xi = \sum_k m_k \xi^k$, with $\xi^k \in \mathbf{Tan}^0_{\mu^k}$.

Agree that $\mathcal{A} \subset \mathscr{P}_2(\mathbb{T} \mathbb{R}^d)^0_{\mu}$ has dim *k* if there exists $x \mapsto D_k(x) \subset \mathbb{T}_x \mathbb{R}^d$ vector spaces of dim *k* such that $\xi \in \mathcal{A}$ if and only if ξ -a.e. $v \in D_k(x)$.

THEOREM Any
$$\mu$$
 writes as $\sum_{k=0}^{d} m_k \mu^k$, where
• $\mathbf{Sol}^0_{\mu} = \sum_{k=0}^{d} m_k \mathbf{Sol}^0_{\mu^k}$, with $\mathbf{Sol}^0_{\mu^k}$ of dimension k ,
• $\mathbf{Tan}^0_{\mu} = \sum_{k=0}^{d} m_k \mathbf{Tan}^0_{\mu^k}$, with $\mathbf{Tan}^0_{\mu^k}$ of dimension $d-k$.

Remark If $\xi, \zeta \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$ are centred, $\langle \xi, \zeta \rangle_{\mu} = 0$ if and only if $\langle \xi_x, \zeta_x \rangle_{\delta_x} = 0 \ \mu$ -a.e..

Indeed, choosing centred disintegrations,

$$0 = \langle \xi, \zeta \rangle_{\mu} = \int_{x \in \mathbb{R}^d} \underbrace{\langle \xi_x, \zeta_x \rangle_{\delta_x}}_{\geq 0} d\mu.$$

Proposition Let $\mu = \sum_k m_k \mu^k$, with μ^k mutually singular. Then • $\zeta \in \mathbf{Sol}^0_{\mu}$ iff $\zeta = \sum_k m_k \zeta^k$, with $\zeta^k \in \mathbf{Sol}^0_{\mu^k}$,

•
$$\xi \in \mathbf{Tan}^0_\mu$$
 iff $\xi = \sum_k m_k \xi^k$, with $\xi^k \in \mathbf{Tan}^0_{\mu^k}$.

· /.

Agree that $\mathcal{A} \subset \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)^0_{\mu}$ has dim *k* if there exists $x \mapsto D_k(x) \subset \mathbb{T}_x \mathbb{R}^d$ vector spaces of dim *k* such that $\xi \in \mathcal{A}$ if and only if ξ -a.e. $v \in D_k(x)$.

THEOREM Any
$$\mu$$
 writes as $\sum_{k=0}^{d} m_k \mu^k$, where
• $\mathbf{Sol}^0_{\mu} = \sum_{k=0}^{d} m_k \mathbf{Sol}^0_{\mu^k}$, with $\mathbf{Sol}^0_{\mu^k}$ of dimension k ,
• $\mathbf{Tan}^0_{\mu} = \sum_{k=0}^{d} m_k \mathbf{Tan}^0_{\mu^k}$, with $\mathbf{Tan}^0_{\mu^k}$ of dimension $d-k$.

Remark If $\xi, \zeta \in \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)_{\mu}$ are centred, $\langle \xi, \zeta \rangle_{\mu} = 0$ if and only if $\langle \xi_x, \zeta_x \rangle_{\delta_x} = 0 \ \mu$ -a.e..

Indeed, choosing centred disintegrations,

$$0 = \langle \xi, \zeta \rangle_{\mu} = \int_{x \in \mathbb{R}^d} \underbrace{\langle \xi_x, \zeta_x \rangle_{\delta_x}}_{\geq 0} d\mu.$$

Proposition Let $\mu = \sum_k m_k \mu^k$, with μ^k mutually singular. Then • $\zeta \in \mathbf{Sol}^0_{\mu}$ iff $\zeta = \sum_k m_k \zeta^k$, with $\zeta^k \in \mathbf{Sol}^0_{\mu^k}$,

•
$$\xi \in \operatorname{Tan}_{\mu}^{0}$$
 iff $\xi = \sum_{k} m_{k} \xi^{k}$, with $\xi^{k} \in \operatorname{Tan}_{\mu^{k}}^{0}$.

Agree that $\mathcal{A} \subset \mathscr{P}_2(\mathbb{T}\mathbb{R}^d)^0_{\mu}$ has dim *k* if there exists $x \mapsto D_k(x) \subset \mathbb{T}_x \mathbb{R}^d$ vector spaces of dim *k* such that $\xi \in \mathcal{A}$ if and only if ξ -a.e. $v \in D_k(x)$.

THEOREM Any
$$\mu$$
 writes as $\sum_{k=0}^{d} m_k \mu^k$, where
• $\mathbf{Sol}^0_{\mu} = \sum_{k=0}^{d} m_k \mathbf{Sol}^0_{\mu^k}$, with $\mathbf{Sol}^0_{\mu^k}$ of dimension k ,
• $\mathbf{Tan}^0_{\mu} = \sum_{k=0}^{d} m_k \mathbf{Tan}^0_{\mu^k}$, with $\mathbf{Tan}^0_{\mu^k}$ of dimension $d-k$.

Introduction	Control in CAT(0) 00	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$ 000	Perspectives O

Table of Contents

Introduction

Optimal control in CAT(0) spaces

Hamilton-Jacobi-Bellman equations in CBB(0) spaces

Geometry in the Wasserstein space

Perspectives

Introduction	Control in CAT(0) 00	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$	Perspectives

Some perspectives

Semiconcave & L-differentiable

In $\mathscr{P}_2(\mathbb{R}^d)$, viscosity solutions

- based on the regular directions;
- based on the geometric ones.

For instance, $\varphi \coloneqq d_{\mathcal{W}}^2\left(\cdot, \frac{\delta_{-1} + \delta_1}{2}\right)$ has

- regular superdifferential $\{0\}$ at δ_0 ,
- geometric one $\overline{\operatorname{conv}}\left\{\frac{\delta_{0,-1}+\delta_{0,1}}{2}\right\}$.

Q. For which Hamiltonians H are both definitions equivalent?

Some perspectives

Semiconcave & L-differentiable

In $\mathscr{P}_2(\mathbb{R}^d)$, viscosity solutions

- based on the regular directions;
- based on the geometric ones.

For instance, $\varphi \coloneqq d_{\mathcal{W}}^2\left(\cdot, \frac{\delta_{-1} + \delta_1}{2}\right)$ has

- regular superdifferential {0} at δ_0 ,
- geometric one $\overline{\operatorname{conv}}\left\{\frac{\delta_{0,-1}+\delta_{0,1}}{2}\right\}$.

Q. For which Hamiltonians H are both definitions equivalent?

Complete decomposition

Conjecture: the decomposition $\mu = \sum_{k=0}^{d} m_k \mu^k$ satisfies

- μ^k is concentrated on countably many c-c hypersurfaces of dimension k,
- μ^k gives 0 mass to c-c hypersurfaces of dim k-1. Hence μ^0 would be the atoms, μ^1 concentrated on c-c curves, etc...

Some perspectives

Semiconcave & L-differentiable

In $\mathscr{P}_2(\mathbb{R}^d)$, viscosity solutions

- based on the regular directions;
- based on the geometric ones.

For instance, $\varphi \coloneqq d_{\mathcal{W}}^2\left(\cdot, \frac{\delta_{-1} + \delta_1}{2}\right)$ has

- regular superdifferential $\{0\}$ at δ_0 ,
- geometric one $\overline{\operatorname{conv}}\left\{\frac{\delta_{0,-1}+\delta_{0,1}}{2}\right\}$.

Q. For which Hamiltonians H are both definitions equivalent?

Complete decomposition

Conjecture: the decomposition $\mu = \sum_{k=0}^{d} m_k \mu^k$ satisfies

- μ^k is concentrated on countably many c-c hypersurfaces of dimension k,
- μ^k gives 0 mass to c-c hypersurfaces of dim k-1. Hence μ^0 would be the atoms, μ^1 concentrated on c-c curves, etc...

Other tangent cones

Similar yet distinct decompositions and spaces exist in relation with Lipschitz functions [BCJ05, AM16]. Any link?

Introduction	Control in CAT(0)	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$ 000	Perspectives O

Thank you!

Introduction	Control in CAT(0)	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$	Perspectives O

Details on the HJB formulation in CAT(0) spaces

Let $H:(x,p)\mapsto \sup_{\varphi\in\overline{\operatorname{conv}}f(x)}-p(\nabla_x\varphi)$, and consider the following Hamilton-Jacobi-Bellman equation:

(HJB)
$$-\partial_t v + H(x, D_x v(t, x)) = 0, \qquad v(T, \cdot) = \mathfrak{J}.$$

Def [JZ23] A viscosity solution $v \in C([0,T] \times \mathbb{R}^d; \mathbb{R})$ of (HJB) is both a subsolution: if φ is C^2 in time, semiconvex in space, and touches v from above at (t,x),

 $-\partial_t \varphi(t,x) + H(x, D_x \varphi(t,x)) \leq 0.$

Introduction	Control in CAT(0)	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$	Perspectives O

Details on the HJB formulation in CAT(0) spaces

Let $H:(x,p)\mapsto \sup_{\varphi\in\overline{\operatorname{conv}}f(x)}-p(\nabla_x\varphi)$, and consider the following Hamilton-Jacobi-Bellman equation:

(HJB)
$$-\partial_t v + H(x, D_x v(t, x)) = 0, \qquad v(T, \cdot) = \mathfrak{J}.$$

Def [JZ23] A viscosity solution $v \in C([0,T] \times \mathbb{R}^d; \mathbb{R})$ of (HJB) is both a **supersolution:** if φ is C^2 in time, **semiconcave** in space, and touches v from **below** at (t,x),

 $-\partial_t \varphi(t,x) + H(x, D_x \varphi(t,x)) \ge 0.$

Introduction	Control in CAT(0)	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$	Perspectives ○

Details on the HJB formulation in CAT(0) spaces

Let $H:(x,p)\mapsto \sup_{\varphi\in\overline{\operatorname{conv}}f(x)}-p(\nabla_x\varphi)$, and consider the following Hamilton-Jacobi-Bellman equation:

(HJB)
$$-\partial_t v + H(x, D_x v(t, x)) = 0, \qquad v(T, \cdot) = \mathfrak{J}.$$

Def [JZ23] A viscosity solution $v \in C([0,T] \times \mathbb{R}^d; \mathbb{R})$ of (HJB) is both a **supersolution:** if φ is C^2 in time, **semiconcave** in space, and touches v from **below** at (t,x),

$$-\partial_t \varphi(t,x) + H(x, D_x \varphi(t,x)) \ge 0.$$

Under the technical assumption [A2.1.3] to approximate the gradient flows of functions in \mathcal{E} by geodesics, the following holds.

Proposition Assume f, \mathfrak{J} Lipschitz and bounded. Then V is the unique viscosity solution of (HJB).

Introduction	Control in CAT(0) 00	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$ 000	Perspectives O

Details on the convexification procedure

A dynamic f is valued in a set $\mathcal{E} \subset \operatorname{Lip}(\mathbb{R}^d;\mathbb{R})$ of concave functions. Its closed convex hull is defined in the Banach space \mathbb{E} of limit points of Lipschitz DC functions, quotiented by constants, with respect to

$$\|\varphi\|_{1,\infty} \coloneqq \sup_{(x,v)\in \mathbb{T}\mathbb{R}^d, |v|_x=1} \left| D_x \varphi(v) \right|.$$

Introduction	Control in CAT(0) 00	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$ 000	Perspectives O

Details on the convexification procedure

A dynamic f is valued in a set $\mathcal{E} \subset \operatorname{Lip}(\mathbb{R}^d;\mathbb{R})$ of concave functions. Its closed convex hull is defined in the Banach space \mathbb{E} of limit points of Lipschitz DC functions, quotiented by constants, with respect to

$$\|\varphi\|_{1,\infty} \coloneqq \sup_{(x,v)\in \mathbb{T}\mathbb{R}^d, |v|_x=1} \left| D_x \varphi(v) \right|.$$

Introduction	Control in CAT(0)	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$ 000	Perspectives O

Details on the convexification procedure

A dynamic f is valued in a set $\mathcal{E} \subset \operatorname{Lip}(\mathbb{R}^d;\mathbb{R})$ of concave functions. Its closed convex hull is defined in the Banach space \mathbb{E} of limit points of Lipschitz DC functions, quotiented by constants, with respect to

$$\|\varphi\|_{1,\infty} \coloneqq \sup_{(x,v)\in \mathrm{T}\mathbb{R}^d, |v|_x=1} \left| D_x \varphi(v) \right|.$$

Proposition Assume that each $\varphi \in \mathcal{E}$ satisfies $D_x \varphi = \langle \nabla_x \varphi, \cdot \rangle_x$. If $(y_t)_t$ solves $\mathring{y}_t \ni \int_{\varphi \in \mathcal{E}} \varphi d\omega_s(\varphi)$ for $\omega \in L^1(0, T; \mathscr{P}_1(\mathcal{E}))$, then $y_t^+ = \operatorname{Bary}_{T_{y_t} \mathbb{R}^d} (\nabla_{y_t \#} \omega_t)$ a.e. in [0, T].

Introduction	Control in CAT(0)	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$	Perspectives O

Details on the comparison principle in CBB(0) spaces

We consider

$$-\partial_t v(t,x) + H(x, D_x v(t,x)) = 0, \qquad v(T, \cdot) = \mathfrak{J}.$$

The notion of viscosity solution is based on semiconcave/semiconvex test functions.

THEOREM Assume $H(y, -\lambda D_y d^2(x, \cdot)) - H(x, \lambda D_x d^2(\cdot, y)) \leq \lambda C d(x, y)(1 + d(x, y))$ for $\lambda \geq 0$, and $H(x, \cdot)$ Lipschitz. Let u, -v be locally uniformly upper semicontinuous and locally bounded, with u subsolution and v supersolution. Then $\sup_{[0,T]\times\Omega} u - v \leq \sup_{\Omega} u(T, \cdot) - v(T, \cdot)$.

Introduction	Control in CAT(0) 00	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$ 000	Perspectives O

Details on the comparison principle in CBB(0) spaces

We consider

$$-\partial_t v(t,x) + H(x, D_x v(t,x)) = 0, \qquad v(T, \cdot) = \mathfrak{J}.$$

The notion of viscosity solution is based on semiconcave/semiconvex test functions.

THEOREM Assume $H(y, -\lambda D_y d^2(x, \cdot)) - H(x, \lambda D_x d^2(\cdot, y)) \leq \lambda C d(x, y)(1 + d(x, y))$ for $\lambda \geq 0$, and $H(x, \cdot)$ Lipschitz. Let u, -v be locally uniformly upper semicontinuous and locally bounded, with u subsolution and v supersolution. Then $\sup_{[0,T]\times\Omega} u - v \leq \sup_{\Omega} u(T, \cdot) - v(T, \cdot)$.

Here

- "strong" upper semicontinuity is equivalent to $B \mapsto \sup_B u$ upper semicontinuous in the Hausdorff topology over nonempty compact sets.
- The argument employs the Ekeland-Borwein-Preiss-Zhu principle [BZ05].
- Growth conditions are avoided owing to the variable t and a clever penalization from [FGS17].

Introduction	Control in CAT(0)	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$	Perspectives ○

Details about the classification $\mathbf{Tan}_{\mu}/\mathbf{Sol}_{\mu}$

The equivalences

$$\xi \in \mathbf{Tan}_{\mu} \Leftrightarrow \lim_{h \searrow 0} \frac{d_{\mathcal{W}}(\mu, \exp_{\mu}(h \cdot \xi))}{h} = \|\xi\|_{\mu} \quad \text{and} \quad \zeta \in \mathbf{Sol}_{\mu} \Leftrightarrow \lim_{h \searrow 0} \frac{d_{\mathcal{W}}(\mu, \exp_{\mu}(h \cdot \zeta))}{h} = 0$$

hold

- if ξ , ζ are induced by maps;
- in dim 1, if μ is purely atomic or absolutely continuous with respect to the Lebesgue measure.

All results in this directions are consequences of the following lemma:

Let
$$\xi \in \mathscr{P}_2(\mathrm{T}\Omega)_{\mu}$$
 such that $\lim_{h \searrow 0} \frac{d_{\mathcal{W}}(\mu, \exp_{\mu}(h \cdot \xi))}{h} = \|\xi\|_{\mu}$. Then there exists $(h_n)_n \searrow 0$ such that
$$\lim_{n \to \infty} \sup_{\gamma \in \frac{1}{h_n} \cdot \exp_{\mu}^{-1}(\exp_{\mu}(h_n \cdot \xi))} d_{\mathcal{W}, \mathrm{T}\Omega}(\gamma, \xi) = 0.$$

Introduction	Control in CAT(0)	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$	Perspectives ○

Decompose $\mu = m_a \mu^a + m_d \mu^d$, with $\mu^a \in \mathscr{P}_2(\mathbb{R})$ purely atomic and $\mu^d \in \mathscr{P}_2(\mathbb{R})$ diffuse (atomless).

THEOREM One has

- $\xi \in \operatorname{Tan}_{\mu}$ if and only if $\xi = m_a \xi^a + m_d f_{\#}^d \mu^d$, with $\xi^a \in \mathscr{P}_2(\mathbb{T}\mathbb{R})_{\mu^a}$ and $f^d \in L^2_{\mu^d}(\mathbb{R};\mathbb{T}\mathbb{R})$;
- $\zeta \in \mathbf{Sol}_{\mu}$ if and only if $\zeta = m_a 0_{\mu^a} + m_d \zeta^d$, with $\zeta^d \in \mathscr{P}_2(\mathbb{T}\mathbb{R})_{\mu^d}$ centred.

Decompose $\mu = m_a \mu^a + m_d \mu^d$, with $\mu^a \in \mathscr{P}_2(\mathbb{R})$ purely atomic and $\mu^d \in \mathscr{P}_2(\mathbb{R})$ diffuse (atomless).

THEOREM One has

- $\xi \in \operatorname{Tan}_{\mu}$ if and only if $\xi = m_a \xi^a + m_d f_{\#}^d \mu^d$, with $\xi^a \in \mathscr{P}_2(\mathbb{T}\mathbb{R})_{\mu^a}$ and $f^d \in L^2_{\mu^d}(\mathbb{R};\mathbb{T}\mathbb{R})$;
- $\zeta \in \mathbf{Sol}_{\mu}$ if and only if $\zeta = m_a 0_{\mu^a} + m_d \zeta^d$, with $\zeta^d \in \mathscr{P}_2(\mathbb{T}\mathbb{R})_{\mu^d}$ centred.

For μ the Cantor measure,

$$\xi \coloneqq \frac{(id, -1)_{\#} \mu + (id, 1)_{\#} \mu}{2} \qquad \frac{1}{2}$$

in **Sol** _{μ} . Let $\mu_h \coloneqq \exp_{\mu}(h \cdot \xi)$.

Averil Aussedat

Decompose $\mu = m_a \mu^a + m_d \mu^d$, with $\mu^a \in \mathscr{P}_2(\mathbb{R})$ purely atomic and $\mu^d \in \mathscr{P}_2(\mathbb{R})$ diffuse (atomless).

THEOREM One has • $\xi \in \mathbf{Tan}_{\mu}$ if and only if $\xi = m_a \xi^a + m_d f_{\#}^d \mu^d$, with $\xi^a \in \mathscr{P}_2(\mathbb{T}\mathbb{R})_{\mu^a}$ and $f^d \in L^2_{\mu^d}(\mathbb{R};\mathbb{T}\mathbb{R})$; • $\zeta \in \mathbf{Sol}_{\mu}$ if and only if $\zeta = m_a 0_{\mu^a} + m_d \zeta^d$, with $\zeta^d \in \mathscr{P}_2(\mathbb{T}\mathbb{R})_{\mu^d}$ centred.

For μ the Cantor measure,

$$\begin{split} \xi &\coloneqq \frac{(id,-1)_{\#}\mu + (id,1)_{\#}\mu}{2} & \frac{1}{9} \\ &\text{in } \mathbf{Sol}_{\mu}. \text{ Let } \mu_h \coloneqq \exp_{\mu}(h \cdot \xi). \\ & \frac{1}{3} \end{split}$$

Decompose $\mu = m_a \mu^a + m_d \mu^d$, with $\mu^a \in \mathscr{P}_2(\mathbb{R})$ purely atomic and $\mu^d \in \mathscr{P}_2(\mathbb{R})$ diffuse (atomless).

THEOREM One has • $\xi \in \mathbf{Tan}_{\mu}$ if and only if $\xi = m_a \xi^a + m_d f_{\#}^d \mu^d$, with $\xi^a \in \mathscr{P}_2(\mathbb{T}\mathbb{R})_{\mu^a}$ and $f^d \in L^2_{\mu^d}(\mathbb{R};\mathbb{T}\mathbb{R})$; • $\zeta \in \mathbf{Sol}_{\mu}$ if and only if $\zeta = m_a 0_{\mu^a} + m_d \zeta^d$, with $\zeta^d \in \mathscr{P}_2(\mathbb{T}\mathbb{R})_{\mu^d}$ centred.

Decompose $\mu = m_a \mu^a + m_d \mu^d$, with $\mu^a \in \mathscr{P}_2(\mathbb{R})$ purely atomic and $\mu^d \in \mathscr{P}_2(\mathbb{R})$ diffuse (atomless).

THEOREM One has • $\xi \in \mathbf{Tan}_{\mu}$ if and only if $\xi = m_a \xi^a + m_d f_{\#}^d \mu^d$, with $\xi^a \in \mathscr{P}_2(\mathbb{TR})_{\mu^a}$ and $f^d \in L^2_{\mu^d}(\mathbb{R};\mathbb{TR})$; • $\zeta \in \mathbf{Sol}_{\mu}$ if and only if $\zeta = m_a 0_{\mu^a} + m_d \zeta^d$, with $\zeta^d \in \mathscr{P}_2(\mathbb{TR})_{\mu^d}$ centred.

Decompose $\mu = m_a \mu^a + m_d \mu^d$, with $\mu^a \in \mathscr{P}_2(\mathbb{R})$ purely atomic and $\mu^d \in \mathscr{P}_2(\mathbb{R})$ diffuse (atomless).

THEOREM One has • $\xi \in \mathbf{Tan}_{\mu}$ if and only if $\xi = m_a \xi^a + m_d f_{\#}^d \mu^d$, with $\xi^a \in \mathscr{P}_2(\mathbb{T}\mathbb{R})_{\mu^a}$ and $f^d \in L^2_{\mu^d}(\mathbb{R};\mathbb{T}\mathbb{R})$; • $\zeta \in \mathbf{Sol}_{\mu}$ if and only if $\zeta = m_a 0_{\mu^a} + m_d \zeta^d$, with $\zeta^d \in \mathscr{P}_2(\mathbb{T}\mathbb{R})_{\mu^d}$ centred.

Decompose $\mu = m_a \mu^a + m_d \mu^d$, with $\mu^a \in \mathscr{P}_2(\mathbb{R})$ purely atomic and $\mu^d \in \mathscr{P}_2(\mathbb{R})$ diffuse (atomless).

THEOREM One has • $\xi \in \mathbf{Tan}_{\mu}$ if and only if $\xi = m_a \xi^a + m_d f_{\#}^d \mu^d$, with $\xi^a \in \mathscr{P}_2(\mathbb{T}\mathbb{R})_{\mu^a}$ and $f^d \in L^2_{\mu^d}(\mathbb{R};\mathbb{T}\mathbb{R});$ • $\zeta \in \mathbf{Sol}_{\mu}$ if and only if $\zeta = m_a 0_{\mu^a} + m_d \zeta^d$, with $\zeta^d \in \mathscr{P}_2(\mathbb{T}\mathbb{R})_{\mu^d}$ centred.

Decompose $\mu = m_a \mu^a + m_d \mu^d$, with $\mu^a \in \mathscr{P}_2(\mathbb{R})$ purely atomic and $\mu^d \in \mathscr{P}_2(\mathbb{R})$ diffuse (atomless).

THEOREM One has

- $\xi \in \operatorname{Tan}_{\mu}$ if and only if $\xi = m_a \xi^a + m_d f_{\#}^d \mu^d$, with $\xi^a \in \mathscr{P}_2(\mathbb{T}\mathbb{R})_{\mu^a}$ and $f^d \in L^2_{\mu^d}(\mathbb{R};\mathbb{T}\mathbb{R})$;
- $\zeta \in \mathbf{Sol}_{\mu}$ if and only if $\zeta = m_a 0_{\mu^a} + m_d \zeta^d$, with $\zeta^d \in \mathscr{P}_2(\mathbb{T}\mathbb{R})_{\mu^d}$ centred.

For μ the Cantor measure,

$$\xi \coloneqq \frac{(id, -1)_{\#}\mu + (id, 1)_{\#}\mu}{2}$$

in **Sol** _{μ} . Let $\mu_h \coloneqq \exp_{\mu}(h \cdot \xi)$.
$$\frac{d_{\mathcal{W}}(\mu, \mu_h)}{h} = \frac{d_{\mathcal{W}}(\mu, \mu_{3h})}{3h}.$$

Introduction	Control in CAT(0) 00	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$	Perspectives

If \mathbb{R}^d is a one-dimensional network, with possibly junctions and loops, $(\mathscr{P}_2(\mathbb{R}^d), d_{\mathcal{W}})$ does not have curvature bounds.

Question. Can we find directionally differentiable test functions?

If \mathbb{R}^d is a one-dimensional network, with possibly junctions and loops, $(\mathscr{P}_2(\mathbb{R}^d), d_{\mathcal{W}})$ does not have curvature bounds.

Question. Can we find directionally differentiable test functions?

Let $\mathcal{G} \subset AC([0,1];\mathbb{R}^d)$ be the set of unit-speed geodesics, and $e_h: \mathcal{G} \to \mathbb{R}^d$ the evaluation at time $h \in [0,1]$, i.e. $e_h(\gamma) = \gamma_h$.

THEOREM Let
$$\xi \in \mathscr{P}_2(\mathscr{C})$$
 and $\sigma \in \mathscr{P}_2(\mathbb{R}^d)$. Then
$$\lim_{h \searrow 0} \frac{d^2_{\mathcal{W}}((e_h)_{\#}\xi, \sigma) - d^2_{\mathcal{W}}((e_0)_{\#}\xi, \sigma)}{h} = \inf_{\substack{\alpha \in \Gamma(\xi, \sigma) \\ (e_0(\pi_{\gamma}), \pi_z)_{\#}\alpha \text{ opt.}}} \int_{(\gamma, z) \in \mathscr{C} \times \mathbb{R}^d} \frac{d}{dh} \Big|_{h=0} d^2(\gamma(\cdot), z) \, d\alpha(\gamma, z).$$

Introduction	Control in CAT(0)	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$	Perspectives O

$$\frac{d_{\mathcal{W}}^2((e_h)_{\#}\xi,\sigma)-d_{\mathcal{W}}^2(\mu,\sigma)}{h} \leq \int_{(\gamma,z)\in\mathcal{G}\times\mathbb{R}^d} \frac{d^2(\gamma_h,z)-d^2(\gamma_0,z)}{h}d\alpha^*.$$

Introduction	Control in CAT(0) 00	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$	Perspectives O

$$\frac{d_{\mathcal{W}}^2((e_h)_{\#}\xi,\sigma)-d_{\mathcal{W}}^2(\mu,\sigma)}{h} \leq \int_{(\gamma,z)\in\mathcal{G}\times\mathbb{R}^d} \frac{d^2(\gamma_h,z)-d^2(\gamma_0,z)}{h} d\alpha^*.$$

Introduction	Control in CAT(0)	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$	Perspectives O

$$\frac{d_{\mathcal{W}}^2((e_h)_{\#}\xi,\sigma)-d_{\mathcal{W}}^2(\mu,\sigma)}{h} \leq \int_{(\gamma,z)\in\mathcal{G}\times\mathbb{R}^d} \frac{d^2(\gamma_h,z)-d^2(\gamma_0,z)}{h}d\alpha^*.$$

Introduction	Control in CAT(0)	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$	Perspectives O

$$\frac{d_{\mathcal{W}}^2((e_h)_{\#}\xi,\sigma)-d_{\mathcal{W}}^2(\mu,\sigma)}{h} \leq \int_{(\gamma,z)\in\mathcal{G}\times\mathbb{R}^d} \frac{d^2(\gamma_h,z)-d^2(\gamma_0,z)}{h}d\alpha^*.$$

Introduction	Control in CAT(0) 00	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$	Perspectives ○

General strategy: bound the limit sup from above (easy) and the limit inf from below (hard) by the same quantity.

$$\frac{d_{\mathcal{W}}^2((e_h)_{\#}\xi,\sigma)-d_{\mathcal{W}}^2(\mu,\sigma)}{h} \leq \int_{(\gamma,z)\in\mathcal{G}\times\mathbb{R}^d}\underbrace{\frac{d^2(\gamma_h,z)-d^2(\gamma_0,z)}{h}}_{\frac{d}{dh}_{|h=0}d^2(\gamma(\cdot),z)+O(h)}d\alpha^*.$$

Introduction	Control in CAT(0) 00	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$	Perspectives ○

General strategy: bound the limit sup from above (easy) and the limit inf from below (hard) by the same quantity.

$$\frac{d_{\mathcal{W}}^2((e_h)_{\#}\xi,\sigma)-d_{\mathcal{W}}^2(\mu,\sigma)}{h} \geq \int_{(\gamma,z)\in\mathcal{G}\times\mathbb{R}^d} \frac{d^2(\gamma_h,z)-d^2(\gamma_0,z)}{h} d\alpha_h^*.$$

Introduction	Control in CAT(0)	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$	Perspectives O

General strategy: bound the limit sup from above (easy) and the limit inf from below (hard) by the same quantity.

$$\frac{d_{\mathcal{W}}^2((e_h)_{\#}\xi,\sigma)-d_{\mathcal{W}}^2(\mu,\sigma)}{h} \geq \int_{(\gamma,z)\in\mathcal{G}\times\mathbb{R}^d} \frac{d^2(\gamma_h,z)-d^2(\gamma_0,z)}{h} d\alpha_h^*.$$

In \mathbb{R}^d , $h \mapsto \frac{d^2(\gamma_h, z) - d^2(\gamma_0, z)}{h}$ is Lipschitz. In networks, true for $h \leq h_{\gamma, z}^0$. One has to control the mass that α_h^* puts on the problematic (γ, z) .

Introduction	Control in CAT(0)	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$	Perspectives ○

General strategy: bound the limit sup from above (easy) and the limit inf from below (hard) by the same quantity.

$$\frac{d^2_{\mathcal{W}}((e_h)_{\#}\xi,\sigma)-d^2_{\mathcal{W}}(\mu,\sigma)}{h} \geq \int_{(\gamma,z)\in\mathcal{G}\times\mathbb{R}^d} \frac{d^2(\gamma_h,z)-d^2(\gamma_0,z)}{h} d\,\alpha_h^*.$$

In \mathbb{R}^d , $h \mapsto \frac{d^2(\gamma_h, z) - d^2(\gamma_0, z)}{h}$ is Lipschitz. In networks, true for $h \leq h_{\gamma, z}^0$. One has to control the mass that α_h^* puts on the problematic (γ, z) .

• **Junctions.** No uniform estimate if $\gamma_{]0,h[}$ contains a junction *j*.

General strategy: bound the limit sup from above (easy) and the limit inf from below (hard) by the same quantity.

$$\frac{d^2_{\mathcal{W}}((e_h)_{\#}\xi,\sigma)-d^2_{\mathcal{W}}(\mu,\sigma)}{h} \geq \int_{(\gamma,z)\in\mathcal{G}\times\mathbb{R}^d} \frac{d^2(\gamma_h,z)-d^2(\gamma_0,z)}{h} d\alpha_h^*.$$

In \mathbb{R}^d , $h \mapsto \frac{d^2(\gamma_h, z) - d^2(\gamma_0, z)}{h}$ is Lipschitz. In networks, true for $h \leq h_{\gamma, z}^0$. One has to control the mass that α_h^* puts on the problematic (γ, z) .

 $\boldsymbol{\mu}$

$$\alpha_h^* \left(\text{such } (\gamma, z) \right) \leq \mu \left(\mathscr{B}(j, h) \setminus \{j\} \right) \underset{h \searrow 0}{\longrightarrow} 0.$$

General strategy: bound the limit sup from above (easy) and the limit inf from below (hard) by the same quantity.

$$\frac{d^2_{\mathcal{W}}((e_h)_{\#}\xi,\sigma)-d^2_{\mathcal{W}}(\mu,\sigma)}{h} \geq \int_{(\gamma,z)\in\mathcal{G}\times\mathbb{R}^d} \frac{d^2(\gamma_h,z)-d^2(\gamma_0,z)}{h} d\alpha_h^*.$$

In \mathbb{R}^d , $h \mapsto \frac{d^2(\gamma_h, z) - d^2(\gamma_0, z)}{h}$ is Lipschitz. In networks, true for $h \leq h_{\gamma, z}^0$. One has to control the mass that α_h^* puts on the problematic (γ, z) .

 $\boldsymbol{\mu}$

$$\alpha_h^*\left(\mathrm{such}\left(\gamma,z\right)\right) \leq \mu\left(\mathscr{B}(j,h) \setminus \{j\}\right) \underset{h \searrow 0}{\longrightarrow} 0.$$

Introduction	Control in CAT(0) 00	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$ 000	Perspectives O

• **Loops.** Here the estimate fails on (γ, z) such that $\gamma_{]0,h[}$ contains -z.

Introduction

• **Loops.** Here the estimate fails on (γ, z) such that $\gamma_{]0,h[}$ contains -z.

- Assume α_h^* puts mass $\iota > 0$ on the bad set uniformly in *h*.
- Let β_h be $(e_h \circ \pi_\gamma, \pi_z)_{\#} \alpha_h^*$ conditioned on this set, with narrow limit β .

Perspectives

Some results in $\mathscr{P}_{\mathfrak{D}}(\mathbb{R}^d)$

Introduction

• **Loops.** Here the estimate fails on (γ, z) such that $\gamma_{]0,h[}$ contains -z.

- Assume α_h^* puts mass $\iota > 0$ on the bad set uniformly in *h*.
- Let β_h be $(e_h \circ \pi_{\gamma}, \pi_z)_{\#} \alpha_h^*$ conditioned on this set, with narrow limit β .
- β is optimal *and* concentrated on pairs (-z, z).

Perspectives

Introduction

• **Loops.** Here the estimate fails on (γ, z) such that $\gamma_{]0,h[}$ contains -z.

- Assume α_h^* puts mass $\iota > 0$ on the bad set uniformly in *h*.
- Let β_h be $(e_h \circ \pi_{\gamma}, \pi_z)_{\#} \alpha_h^*$ conditioned on this set, with narrow limit β .
- β is optimal *and* concentrated on pairs (-z, z). Hence $\beta = \delta_{(-z_0, z_0)}$.

Perspectives

Introduction

• **Loops.** Here the estimate fails on (γ, z) such that $\gamma_{]0,h[}$ contains -z.

- Assume α_h^* puts mass $\iota > 0$ on the bad set uniformly in *h*.
- Let β_h be $(e_h \circ \pi_\gamma, \pi_z)_{\#} \alpha_h^*$ conditioned on this set, with narrow limit β .
- β is optimal *and* concentrated on pairs (-z, z). Hence $\beta = \delta_{(-z_0, z_0)}$.
- $\pi_{y\#}\beta_h \to \delta_{z_0}$, and $\pi_{y\#}\beta_h \le \iota^{-1}\sigma$; by contraposition, $\pi_{y\#}\beta_h(\{z_0\}) \to 1$.

Perspectives

Introduction

• **Loops.** Here the estimate fails on (γ, z) such that $\gamma_{]0,h[}$ contains -z.

- Assume α_h^* puts mass $\iota > 0$ on the bad set uniformly in *h*.
- Let β_h be $(e_h \circ \pi_\gamma, \pi_z)_{\#} \alpha_h^*$ conditioned on this set, with narrow limit β .
- β is optimal *and* concentrated on pairs (-z, z). Hence $\beta = \delta_{(-z_0, z_0)}$.
- $\pi_{y\#}\beta_h \to \delta_{z_0}$, and $\pi_{y\#}\beta_h \le \iota^{-1}\sigma$; by contraposition, $\pi_{y\#}\beta_h(\{z_0\}) \to 1$.

Perspectives

Introduction

• **Loops.** Here the estimate fails on (γ, z) such that $\gamma_{]0,h[}$ contains -z.

- Assume α_h^* puts mass $\iota > 0$ on the bad set uniformly in *h*.
- Let β_h be $(e_h \circ \pi_\gamma, \pi_z)_{\#} \alpha_h^*$ conditioned on this set, with narrow limit β .
- β is optimal and concentrated on pairs (-z, z). Hence $\beta = \delta_{(-z_0, z_0)}$.
- $\pi_{y\#}\beta_h \to \delta_{z_0}$, and $\pi_{y\#}\beta_h \leq \iota^{-1}\sigma$; by contraposition, $\pi_{y\#}\beta_h(\{z_0\}) \to 1$.

Perspectives

Introduction

• **Loops.** Here the estimate fails on (γ, z) such that $\gamma_{]0,h[}$ contains -z.

- Assume α_h^* puts mass $\iota > 0$ on the bad set uniformly in *h*.
- Let β_h be $(e_h \circ \pi_\gamma, \pi_z)_{\#} \alpha_h^*$ conditioned on this set, with narrow limit β .
- β is optimal *and* concentrated on pairs (-z, z). Hence $\beta = \delta_{(-z_0, z_0)}$.
- $\pi_{y\#}\beta_h \to \delta_{z_0}$, and $\pi_{y\#}\beta_h \leq \iota^{-1}\sigma$; by contraposition, $\pi_{y\#}\beta_h(\{z_0\}) \to 1$.

Hence for small h, α_h^* puts mass $\frac{i}{2}$ on the bad (γ, z) for $z = z_0$ fixed.

Perspectives

Introduction

• **Loops.** Here the estimate fails on (γ, z) such that $\gamma_{]0,h[}$ contains -z.

- Assume α_h^* puts mass $\iota > 0$ on the bad set uniformly in *h*.
- Let β_h be $(e_h \circ \pi_\gamma, \pi_z)_{\#} \alpha_h^*$ conditioned on this set, with narrow limit β .
- β is optimal *and* concentrated on pairs (-z, z). Hence $\beta = \delta_{(-z_0, z_0)}$.
- $\pi_{y\#}\beta_h \to \delta_{z_0}$, and $\pi_{y\#}\beta_h \leq \iota^{-1}\sigma$; by contraposition, $\pi_{y\#}\beta_h(\{z_0\}) \to 1$.

Hence for small h, α_h^* puts mass $\frac{l}{2}$ on the bad (γ, z) for $z = z_0$ fixed. As before, all such γ are issued from γ_0 near $-z_0$, and

$$\frac{\iota}{2} \leq \alpha_h^* \left(\text{such } (\gamma, z_0) \right) \leq \mu \left(\mathscr{B}(-z_0, h) \setminus \{-z_0\} \right) \underset{h \searrow 0}{\longrightarrow} 0.$$

Perspectives

Introduction

• **Loops.** Here the estimate fails on (γ, z) such that $\gamma_{]0,h[}$ contains -z.

- Assume α_h^* puts mass $\iota > 0$ on the bad set uniformly in *h*.
- Let β_h be $(e_h \circ \pi_\gamma, \pi_z)_{\#} \alpha_h^*$ conditioned on this set, with narrow limit β .
- β is optimal *and* concentrated on pairs (-z, z). Hence $\beta = \delta_{(-z_0, z_0)}$.
- $\pi_{y\#}\beta_h \to \delta_{z_0}$, and $\pi_{y\#}\beta_h \leq \iota^{-1}\sigma$; by contraposition, $\pi_{y\#}\beta_h(\{z_0\}) \to 1$.

Hence for small h, α_h^* puts mass $\frac{l}{2}$ on the bad (γ, z) for $z = z_0$ fixed. As before, all such γ are issued from γ_0 near $-z_0$, and

$$\frac{l}{2} \leq \alpha_h^* \left(\text{such } (\gamma, z_0) \right) \leq \mu \left(\mathscr{B}(-z_0, h) \setminus \{-z_0\} \right) \underset{h \searrow 0}{\longrightarrow} 0.$$

Perspectives

Introduction

• **Loops.** Here the estimate fails on (γ, z) such that $\gamma_{]0,h[}$ contains -z.

- Assume α_h^* puts mass $\iota > 0$ on the bad set uniformly in *h*.
- Let β_h be $(e_h \circ \pi_\gamma, \pi_z)_{\#} \alpha_h^*$ conditioned on this set, with narrow limit β .
- β is optimal *and* concentrated on pairs (-z, z). Hence $\beta = \delta_{(-z_0, z_0)}$.
- $\pi_{y\#}\beta_h \to \delta_{z_0}$, and $\pi_{y\#}\beta_h \leq \iota^{-1}\sigma$; by contraposition, $\pi_{y\#}\beta_h(\{z_0\}) \to 1$.

Hence for small h, α_h^* puts mass $\frac{l}{2}$ on the bad (γ, z) for $z = z_0$ fixed. As before, all such γ are issued from γ_0 near $-z_0$, and

$$\frac{\iota}{2} \leq \alpha_h^* \left(\text{such } (\gamma, z_0) \right) \leq \mu \left(\mathscr{B}(-z_0, h) \setminus \{-z_0\} \right) \underset{h \searrow 0}{\longrightarrow} 0.$$

• **Conclusion.** The bad set vanishes, $d_{\mathcal{W}}^2(\cdot, v)$ directionally differentiable.

Perspectives

Introduction	Control in CAT(0)	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$ 000	Perspectives

References

[ACCT13]	Yves Achdou, Fabio Camilli, Alessandra Cutrì, and Nicoletta Tchou. Hamilton–Jacobi equations constrained on networks.		Systems & Control: Foundations & Applications. Birkhäuser Boston, MA, 1999.		
	Nonlinear Differential Equations and Applications, 20(3):413–445, June 2013.		Averil Aussedat. On the structure of the geometric tangent cone to the Wasserstein		
[AF14]	Luigi Ambrosio and Jin Feng. On a class of first order Hamilton–Jacobi equations in metric spaces.		space, January 2025. Preprint, available at https://hal.science/hal-04672554.		
[AJZ24]	Journal of Differential Equations, 256(7):2194–2245, April 2014. Averil Aussedat, Othmane Jerhaoui, and Hasnaa Zidani.	[BBC14]	G. Barles, A. Briani, and E. Chasseigne. A Bollman approach for regional acting leantral problems in \mathbb{P}^{n}		
(10001)	Viscosity solutions of centralized control problems in measure spaces. ESAIM Control Optimisation and Calculus of Variations, 30:1–37,		SIAM Journal on Control and Optimization, 52(3):1712–1744, January 2014.		
[AKP23]	October 2024. Stephanie Alexander, Vitali Kapovitch, and Anton Petrunin. Alexandrov Geometry: Foundations. Number 236 in Graduate Studies in Mathematics. American Mathematical Society, Providence, Rhode Island, 2023.	[BC24]	Guy Barles and Emmanuel Chasseigne. On Modern Approaches of Hamilton-Jacobi Equations and Control Problems with Discontinuities, volume 104 of Progress in Nonlinear Differential Equations and Their Applications. Springer Nature Switzerland, Cham, 2024.		
[AM16]	Giovanni Alberti and Andrea Marchese. On the differentiability of Lipschitz functions with respect to measures in the Euclidean space.	[BCJ05]	Guy Bouchitté, Thierry Champion, and Chloé Jimenez. Completion of the space of measures in the Kantorovich norm. Rivista di Matematica della Università di Parma, 4*:127–139, 2005.		
[Aub99]	 Geometric and Functional Analysis, 26(1):1–66, February 2016. Jean Pierre Aubin. Mutational and Morphological Analysis. 		Jonathan M. Borwein and Qiji J. Zhu. <i>Techniques of Variational Analysis.</i> CMS Books in Mathematics. Springer-Verlag, New York, 2005.		

	Introduction 00	Control in 00	n CAT(0)	HJB in CBB(0) 00	Some results in $\mathscr{P}_2(\mathbb{R}^d)$ 000	Perspectives O
[CD18]	René Carmona and François Delarue. Probabilistic Theory of Mean Field Games with Applications II, volume 84 of Probability Theory and Stochastic Modelling. Springer International Publishing, 2018.	[CQ08]	P. Carda Determi initial co Internat	liaguet and M. Qu nistic differential ondition. <i>ional Game Theor</i>	uincampoix. games under probability kno y <i>Review</i> , 10(01):1–16, March	wledge of n 2008.
[CDLL19]	Pierre Cardaliaguet, François Delarue, Jean-Michel Lasry, and Pierre-Louis Lions. The Master Equation and the Convergence Problem in Mean Field	[CSM13]	Fabio Ca Eikonal <i>Interface</i>	amilli, Dirk Schieb equations on rami es and Free Bound	orn, and Claudio Marchi. fied spaces. aries, 15(1):121–140, 2013.	
	Games. Number 201 in Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2019.	[FGŚ17]	[7] Giorgio Fabbri, Fausto Gozzi, and Andrzej Święch Stochastic Optimal Control in Infinite Dimension, Probability Theory and Stochastic Modelling.		zzi, and Andrzej Święch. l in Infinite Dimension, volu ochastic Modelling.	me 82 of
[CKT23]	Giovanni Conforti, Richard C. Kraaij, and Daniela Tonon. Hamilton-Jacobi equations for controlled gradient flows: Cylindrical test functions, 2023. Preprint, available at https://arxiv.org/abs/2302.06571.	[FL23]	Springer Hélène I Filippov Annali S	r International Pu Frankowska and T 's Theorem for mu Scuola Normale Su	blishing, Cham, 2017. 'homas Lorenz . tational inclusions in a metr <i>aperiore - Classe di Scienze</i> , p	ic space.
[CL83] [CM13]	Michael G. Crandall and Pierre-Louis Lions. Viscosity solutions of Hamilton-Jacobi equations. Transactions of the American Mathematical Society, 277(1):1–42, 1983. Fabio Camilli and Claudio Marchi.	[GHN15]	1053–10 Yoshikaz Eikonal Transacz January	94, June 2023. zu Giga, Nao Ham equations in metri tions of the Americ 2015.	amuki, and Atsushi Nakaya ic spaces. an Mathematical Society, 36	su . 57(1):49–66,
	A comparison among various notions of viscosity solution for Hamilton–Jacobi equations on networks. <i>Journal of Mathematical Analysis and Applications</i> , 407(1):112–118, November 2013.	[Gig08]	Nicola G On the C the Quae PhD the	ligli. Geometry of the Spe dratic Optimal Tro sis, Scuola Norma	ace of Probability Measures H unsport Distance. le Superiore di Pisa, Pisa, 20	Endowed with
[CMNP18]	 Giulia Cavagnari, Antonio Marigonda, Khai T. Nguyen, and Fabio S. Priuli. Generalized Control Systems in the Space of Probability Measures. Set-Valued and Variational Analysis, 26(3):663–691, September 2018. 	[GNT08]	Wilfrid (Hamilto <i>Methods</i>	Gangbo, Truyen N n-Jacobi Equation and Applications	guyen, and Adrian Tudorasc s in the Wasserstein Space. of Analysis, 15(2):155–184, 2	u. 2008.

Averil Aussedat

Optimal control & HJB equations in curved spaces

June 19, 2025

10 / 10

	Introdu 00	ction Control in 00	h CAT(0) HJB in CBB(0) Some results in $\mathscr{P}_2(\mathbb{R}^d)$ Perspectives 00 000 O
[GŚ15]	Wilfrid Gangbo and Andrzej Święch. Metric viscosity solutions of Hamilton–Jacobi equations dependin local slopes. Calculus of Variations and Partial Differential Equations, 54(1):1183–1218, September 2015.	[JMQ23] ng on	Chloé Jimenez, Antonio Marigonda, and Marc Quincampoix. Dynamical systems and Hamilton-Jacobi-Bellman equations on the Wasserstein space and their l^2 representations. SIAM Journal on Mathematical Analysis, 55(5):5919–5966, October 2023.
[HK15]	Ryan Hynd and Hwa Kil Kim. Value functions in the Wasserstein spaces: Finite time horizons. Journal of Functional Analysis, 269(4):968–997, August 2015.	[JZ23]	Othmane Jerhaoui and Hasnaa Zidani. Viscosity Solutions of Hamilton-Jacobi Equations in Proper CAT(0) Spaces. <i>The Journal of Geometric Analysis</i> , 34(2):47, December 2023.
[11117]	Cyril Imbert and Regis Monneau. Flux-limited solutions for quasi-convex Hamilton-Jacobi equation networks. Annales scientifiques de l'École normale supérieure, 50(2):357–44. 2017.	as on [LS17] 8,	Pierre-Louis Lions and Panagiotis Souganidis. Well posedness for multi-dimensional junction problems with Kirchoff-type conditions. Rendiconti Lincei - Matematica e Applicazioni, 28, April 2017.
[IMZ13]	Cyril Imbert, Régis Monneau, and Hasnaa Zidani. A Hamilton-Jacobi approach to junction problems and application traffic flows. ESAIM: Control, Optimisation and Calculus of Variations,	[LSZ25] 1 to	Qing Liu, Nageswari Shanmugalingam, and Xiaodan Zhou. Discontinuous eikonal equations in metric measure spaces. Transactions of the American Mathematical Society, 378(01):695–729, January 2025.
[JJZ24]	 19(1):129–166, January 2013. Frédéric Jean, Othmane Jerhaoui, and Hasnaa Zidani. Deterministic Optimal Control on Riemannian Manifolds Under Probability Knowledge of the Initial Condition. 	[May98]	Uwe F. Mayer. Gradient flows on nonpositively curved metric spaces and harmonic maps. Communications in Analysis and Geometry, 6(2):199–253, 1998.
[JMQ20]	SIAM Journal on Mathematical Analysis, 56(3):3326–3356, June 2024. Chloé Jimenez, Antonio Marigonda, and Marc Quincampoix. Optimal control of multiagent systems in the Wasserstein space. Calculus of Variations and Partial Differential Equations, 59:1–4 March 2020.	[RZ13] 5,	Zhiping Rao and Hasnaa Zidani. Hamilton–Jacobi–Bellman Equations on Multi-domains. In Control and Optimization with PDE Constraints, pages 93–116. Springer, Basel, 2013.

Averil Aussedat