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Optimal control problem: Let 7>0 and x € Q. Hamilton-Jacobi-Bellman equation:

For u :[t,T]1— U, solve ys = f(ys,u(s)) with y; = x, —0;0(t, %)+ H (x,D,v(t,x)) =0 [0,T) x Q,
minimize J(yr) over admissible u(:). o(T,) =3 Q.

Of particular interest is the value function
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V(t,x):= inf 3 (y;,x”) . Solution taken in the viscosity sense [CL83].
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General context: Investigation of (such) PDEs on spaces lacking a vector structure.
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For u :[t,T]1— U, solve ys = f(ys,u(s)) with y; = x, —0;0(t, %)+ H (x,D,v(t,x)) =0 [0,T) x Q,
minimize J(yr) over admissible u(:). o(T,) =3 Q.

Of particular interest is the value function with Hamiltonian H(x, p) == suppe .y ~P(b).

V(t,x):= inf 3 (y;,x”) . Solution taken in the viscosity sense [CL83].
ueAdm([¢£,T1;U)

General context: Investigation of (such) PDEs on spaces lacking a vector structure.

Networks & ramified spaces
[ACCT13, CM13, CSM13,
IMZ13, RZ13, BBC14,
LS17,IM17, BC24, JZ23].

Averil Aussedat Optimal control & HJB equations in curved spaces June 19, 2025



Introduction
o0

Introduction

Optimal control problem: Let 7> 0 and x € Q. Hamilton-Jacobi-Bellman equation:

For u :[t,T]1— U, solve ys = f(ys,u(s)) with y; = x, —0;0(t, %)+ H (x,D,v(t,x)) =0 [0,T) x Q,
minimize J(yr) over admissible u(:). o(T,) =3 Q.

Of particular interest is the value function with Hamiltonian H(x, p) == suppe .y ~P(b).

Vi(t,x):= inf 3 (y;,x”) . Solution taken in the viscosity sense [CL83].
ueAdm([¢,T];U)

General context: Investigation of (such) PDEs on spaces lacking a vector structure.

Networks & ramified spaces = Metric viscosity relying on metric

[ACCT13, CM13, CSM13, slopes [AF14, GS15], one-sided
IMZ13, RZ13, BBC14, metric slopes [LLSZ25] or
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Optimal control problem: Let 7> 0 and x € Q. Hamilton-Jacobi-Bellman equation:

For u :[¢,T1— U, solve y5 = f(ys,u(s)) with y; = x, —0.v(t,x)+ H(x,D,v(t,x))=0 [0,7)x Q,
minimize J(yr) over admissible u(:). u(T,)=3 Q.
Of particular interest is the value function with Hamiltonian H(x, p) == suppe .y ~P(b).

Vi(t,x):= inf J ( ;,x”) . Solution taken in the viscosity sense [CL83].
ueAdm([¢,T];U)

General context: Investigation of (such) PDEs on spaces lacking a vector structure.

Networks & ramified spaces  Metric viscosity relying on metric ~ Control of measures [CQOS,

[ACCT13, CM13, CSM13, slopes [AF14, GS15], one-sided GNTO08, HK15, CMNP18,
IMZ13, RZ13, BBC14, metric slopes [LSZ25] or JMQ20, JMQ23, JJZ24] in
LS17, IM17, BC24, JZ23]. pathwise conditions [GHN15]. Wasserstein spaces.
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Let (Q,d) be a complete CAT(0) space (hyperbolic manifold, metric tree...). ‘ H ‘ HH ‘ HH”MH

How to define dynamical systems?

* A curve y(-) may have a right derivative y,” € T,,Q, but difficult to compare between times.
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Optimal control in CAT(0) spaces

Let (Q,d) be a complete CAT(0) space (hyperbolic manifold, metric tree...).
Importantly, geodesic space with d2(:,z) 2-convex for z € Q.

How to define dynamical systems?

* A curve y(-) may have a right derivative y,” € T,,Q, but difficult to compare between times.
¢ Gradient flows in CAT(0) [May98, AKP23]: if E : O — R Lipschitz concave, yields GFg : R* x Q — Q.

¢ Mutations in metric spaces [Aub99, FL23], with “generalized derivatives” y;.

Def Let £ be a subset of Lipschitz concave functions from Q to R, and f: Q = £. A curve
y € AC([0,T1;Q) is a solution of y;: N f(y;) # @ if for almost any ¢, there exists E € f(y;) such that
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Optimal control in CAT(0) spaces

Let (Q,d) be a complete CAT(0) space (hyperbolic manifold, metric tree...).
Importantly, geodesic space with d2(:,z) 2-convex for z € Q.

How to define dynamical systems?

* A curve y(-) may have a right derivative y,” € T,,Q, but difficult to compare between times.
¢ Gradient flows in CAT(0) [May98, AKP23]: if E : O — R Lipschitz concave, yields GFg : R* x Q — Q.

¢ Mutations in metric spaces [Aub99, FL23], with “generalized derivatives” y;.

Def Let £ be a subset of Lipschitz concave functions from Q to R, and f: Q = £. A curve
y € AC([0,T1;Q) is a solution of y;: N f(y;) # @ if for almost any ¢, there exists E € f(y;) such that

d(yt+h,GFE(h)yt)) = O(h)~

Combining properties of gradient flows and mutations, well-posedness.
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Existence in the optimal control problem

In R?, the set of solutions of y, € f(ys) is closed if f(x) is closed and convex (Filippov-Aumann).

Def Define convf(x) in Lipschitz DC functions endowed with || - [|1 co.

THEOREM  Assume f :Q = £ locally Lipschitz with linear growth. The set of trajectories of
convf issued from x € Q is compact, and is the closure in AC([0, T'];Q2) of the trajectories of f.

Usual argument: ( )
Proposition  For such f, y solves y; N

f(y;) # @ iff some measurable selection
¢ extract of a strong-weak limit (y, b), (E,); of t — f(y,) satisfies

e show that y; =x+f(§ bsds and b € convf(ys).
Here y; (s) € Ty, (52, not Hilbert. Reformulation:

* consider a sequence (y,, yn)n of solutions,

d dz(yt’z)

T <E(y;)—E{z) Vz, fora.e.t.
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In R?, the set of solutions of y, € f(ys) is closed if f(x) is closed and convex (Filippov-Aumann).

Def Define convf(x) in Lipschitz DC functions endowed with || - [|1 co.

THEOREM  Assume f :Q = £ locally Lipschitz with linear growth. The set of trajectories of
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e show that y; =x+f(§ bsds and b € convf(ys).
Here y; (s) € Ty, (52, not Hilbert. Reformulation:

& The “EVIs” are linear with respect to E. L

* consider a sequence (y,, yn)n of solutions,
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HJB in CBB(0)
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Viscosity solutions in CBB(0) spaces

Let now (Q2,d) have curvature bounded from below, as spheres, quotients of Hilberts by isometries...
Importantly, d2(-, z) semiconcave for z € Q. Aim: give meaning to

(HJ) —0su(t,x)+ H(x,D,v(t,x)) =0, u(T,)=3.
Here

* H is defined on pairs (x, p), with x € Q and p : T, Q — R Lipschitz and positively homogeneous,
* D,v:T,Q — Ris the application of directional derivatives.

Def A locally uniformly continuous function v is a viscosity solution of (HJ) if it is both a
subsolution: if ¢ is C? in time, semiconcave in space, and touches v from above at (¢,x),

—at(p(t,x)+H(x,Dx(p(t,x)) < 0.
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Let now (Q2,d) have curvature bounded from below, as spheres, quotients of Hilberts by isometries...
Importantly, d2(-, z) semiconcave for z € Q. Aim: give meaning to

(HJ) —0su(t,x)+ H(x,D,v(t,x)) =0, u(T,)=3.
Here

* H is defined on pairs (x, p), with x € Q and p : T, Q — R Lipschitz and positively homogeneous,
* D,v:T,Q — Ris the application of directional derivatives.
Def

A locally uniformly continuous function v is a viscosity solution of (HJ) if it is both a
supersolution: if ¢ is C? in time, semiconvex in space, and touches v from below at (¢, x),

—at(p(t,x)+H(x,Dx(p(t,x)) = 0.
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Viscosity solutions in CBB(0) spaces

Let now (Q,d) have curvature bounded from below, as spheres, quotients of Hilberts by isometries
Importantly, d2(-, z) semiconcave for z € Q. Aim: give meaning to

(HJ) —00(t,x)+ Hx,Dyv(t,x)) =0,  u(T,)=3.

Here
* H is defined on pairs (x, p), with x € Q and p : T, Q — R Lipschitz and positively homogeneous,
* D,v:T,Q — Ris the application of directional derivatives.
Def

A locally uniformly continuous function v is a viscosity solution of (HJ) if it is both a
supersolution: if ¢ is C? in time, semiconvex in space, and touches v from below at (¢, x),

—at(p(t,x)+H(x,Dx(p(t,x)) = 0.

This definition supports a strong comparison principle (Theorem 3.1.12, [AJZ24]).
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HJB in CBB(0)
(] J

Application to the Wasserstein space

(P2(RY),dyy) is CBB(0), so we can turn to the Mayer problem

Minimize G(I,tgiv’u) over u € L1(0,T;U), subject to dss + div (£ls, u(s)]- pts) = 0 and po = v.
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Application to the Wasserstein space

(P2(RY),dyy) is CBB(0), so we can turn to the Mayer problem

Minimize G(p%v’u) over u € L1(0,T;U), subject to dss + div (£ls, u(s)]- pts) = 0 and po = v.

Existing approaches: L-differentiable functions, semidifferentials, metric tools.

Issue: the dynamic f[u,u]is a priori not valued in
the geometric tangent cone T),.

Lemma For any b€ Li(Rd;TRd), there exists
b'eT, ﬂL%l such that

. dw((id +hb)gu,(id + hb )y )
lim =0.
A\0 h

Averil Aussedat

THEOREM Assume f,J Lipschitz.
Then the value function V is the unique
viscosity solution of

—0sv(¢, 1)+ H (1, Dyv(t,w) =0
U(T’ ') = 3

where H (i, p) := SUPpecgonvyiu,Ul -p(rhb).
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Some results in Pg(R%)
@00

Tangent and solenoidal fields, based on [Gig08]

* Metric scalar product. Fix ue Po(RY). For &, € Po(TRY s
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Tangent and solenoidal fields, based on [Gig08]

* Metric scalar product. Fix ue Po(R%). For ¢, (e Po(TRY u» let w1
I,(,0) ={a=aldx,dv,dw) | (me,mp)sa =&, (e, mp)pa =}, (3 ”
WiE Q)= L N ~wl?da, o,
€0 = 5 1613+ 1403 - W2(E,0)] = o [ wwde v, .
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Some results in P9 R%)
@00

Tangent and solenoidal fields, based on [Gig08]

* Metric scalar product. Fix e P3(R?). For ¢,{ € Po(TRY),, let w1
T (0 :={a=aldx,dv,dw) | (me,m)sa =&, (e, m0)a =}, U1 e
WiE Q)= L N ~wl?da, o,
& 0= % (1602 + 102 - W2, 0] = 2 f(mw) (v,w)da. Vs s
Def The tangent cone Tan, is Def The solenoidal cone Sol,, is
[A-E€ Po(TRI), | Gz 7z + o)t 0PL, A5 0] . {ce PR, | €0,=0 VeeTan,}.
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Some results in Pg(R%)
oeo

Classification

Denote by i — exp,,(h - &) := (m, + h7,)4¢ the exponential of ¢ € Po(TR?),.
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Denote by i — exp,,(h - &) := (m, + h7,)4¢ the exponential of ¢ € Po(TR?),.

-

Proposition  If ¢ = fyu for f € LZ(RY;TRY),

~ dw(u,expy(h-¢)
(En) feTan, © lim — =IIEIIM::\/f\v\2d§,

. dw(u,exp,(h-$)
(Eg) ¢€Sol, < ]111{.1(1) - =0
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Denote by i — exp,,(h - &) := (m, + h7,)4¢ the exponential of ¢ € Po(TR?),.

-

Proposition  If ¢ = fyu for f € LZ(RY;TRY),
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Yields dyy(exp, (- fup),exp,(h - fapt)) = o(h), hence the post-it lemma.
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Some results in Pg(R%)
oeo

Classification

Denote by h — expu(h -&) == (7 + hmy )4l the exponential of ¢ € @g(TRd)u.

-

Proposition  If ¢ = fyu for f € LZ(RY;TRY),

~ dw(u,expy(h-¢)
(En) feTan, © lim — =IIEIIM::\/f\v\2d§,

. dw(u,exp,(h-$)
(Eg) ¢€Sol, < ]111{.1(1) - =0

Yields dyy(exp, (- fup),exp,(h - fapt)) = o(h), hence the post-it lemma.
Further precisions in dimension one:

* (E7) and (Eg) hold if y is purely atomic or absolutely continuous.
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Some results in Pg(R%)
oeo

Classification

Denote by h — expu(h -&) == (7 + hmy )4l the exponential of ¢ € @g(TRd)u.

-

Proposition  If ¢ = fyu for f € LZ(RY;TRY),

~ dw(u,expy(h-¢)
(En) feTan, © lim — =IIEIIM::\/f\v\2d§,

. dw(u,exp,(h-$)
(Eg) ¢€Sol, < ]111{.1(1) - =0

Yields dyy(exp, (- fup),exp,(h - fapt)) = o(h), hence the post-it lemma.
Further precisions in dimension one:

* (E7) and (Eg) hold if y is purely atomic or absolutely continuous.
* Neither (Et) or (Eg) holds in general.
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Some results in Pg(R%)
ooce

Decomposition of a measure

Remark If ¢ € @2(TRd)H are centred,
(5,()” =0if and only if ({x,{x)s5, =0 u—a.e..
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Agree that A c P5(TRY)) has dim £ if there exists x — Dj(x) = T, R?
D////// vector spaces of dim & such that ¢ € A if and only if é—a.e. v € Dy (x).
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Some perspectives

Semiconcave & L-differentiable

In g’g(Rd), viscosity solutions
* based on the regular directions;
¢ based on the geometric ones.
For instance, ¢ = d‘Q/V (-, %) has
e regular superdifferential {0} at o,

. —— [ 601+
® geometric one conv{% }

For which Hamiltonians H are
both definitions equivalent?

Q.
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Some perspectives

Semiconcave & L-differentiable Complete decomposition

In P9(R%), viscosity solutions Conjecture: the decomposition u = ZZ:O mp, pk satisfies
* based on the regular directions; * u* is concentrated on countably many
¢ based on the geometric ones. c¢—c hypersurfaces of dimension %,

For instance, ¢ := d12/v ( 6_12+61) has * u* gives 0 mass to c—c hypersurfaces of dim % — 1.
Hence p° would be the atoms, ' concentrated on c—c

e regular superdifferential {0} at o,
curves, etc...

. —— [ 601+
® geometric one conv{% }

For which Hamiltonians H are
both definitions equivalent?

Q.
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Some perspectives

Semiconcave & L-differentiable Complete decomposition

In P9(R%), viscosity solutions Conjecture: the decomposition u = ZZ:O mp, pk satisfies
* based on the regular directions; * u* is concentrated on countably many
¢ based on the geometric ones. c¢—c hypersurfaces of dimension %,

For instance, ¢ := d12/v (,’ 6-12+51) has * u* gives 0 mass to c—c hypersurfaces of dim % — 1.

Hence p° would be the atoms, ' concentrated on c—c

e regular superdifferential {0} at o,
curves, etc...

. —— [ 601+
* geometric one conv { % }
Other tangent cones

Similar yet distinct decompositions and spaces exist in
relation with Lipschitz functions [BCJ05, AM16]. Any
link?

For which Hamiltonians H are
both definitions equivalent?

Q.

Averil Aussedat Optimal control & HJB equations in curved spaces June 19, 2025



Perspectives
o]

Thank you!
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Perspectives
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Details on the HJB formulation in CAT(0) spaces

Let H : (x, p) — suPyezonvr(x) ~P(Vx¢), and consider the following Hamilton-Jacobi-Bellman equation:

(HJB) —0;v+H(x,D,v(t,x))=0, u(T,)=23.

Def [JZ23] A viscosity solution v € C([0,T] x R%;R) of (HJB) is both a
subsolution: ifpis C? in time, semiconvex in space, and touches v from above at (¢,x),

—0:(t,x)+ H (x,D(¢,x)) < 0.
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Details on the HJB formulation in CAT(0) spaces

Let H : (x, p) — suPyezonvr(x) ~P(Vx¢), and consider the following Hamilton-Jacobi-Bellman equation:

(HJB) —0:v+H(x,D,v(t,x)) =0, u(T,)=3.

Def [JZ23] A viscosity solution v € C([0,T] x R%;R) of (HJB) is both a
supersolution: if ¢ is C? in time, semiconcave in space, and touches v from below at (¢,x),

—0:(t,x)+ H (x,D(¢,x)) = 0.

Under the technical assumption [A2.1.3] to approximate the
gradient flows of functions in £ by geodesics, the following holds.

Proposition Assume f, J Lipschitz and bounded. Then
V is the unique viscosity solution of (HJB).
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Details on the convexification procedure

A dynamic f is valued in a set € c Lip(R?%;R) of concave functions. Its closed convex hull is defined in
the Banach space E of limit points of Lipschitz DC functions, quotiented by constants, with respect to

lpll,00 = sup |Dxop(v)].
(x,0)ETRY |v|, =1
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Details on the convexification procedure

A dynamic f is valued in a set € c Lip(R?%;R) of concave functions. Its closed convex hull is defined in
the Banach space E of limit points of Lipschitz DC functions, quotiented by constants, with respect to

lpll,00 = sup |Dxop(v)].
(x,0)ETRY |v|, =1

Proposition  Assume that each ¢ € £
satisfies Dy = (Vy,+),. If (y:): solves y; 3
fweg pdwy(p) for w e LY0,T;21(E)), then

vy = BaryTyt rd (Vys0:) a.e.in[0,T].
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Details on the comparison principle in CBB(0) spaces

We consider
—0su(t,x)+ H(x,D,v(t,x)) =0, u(T,)=3.

The notion of viscosity solution is based on semiconcave/semiconvex test functions.

THEOREM  Assume H(y,-AD,d%(x,"))—H(x,ADd?(,,y)) < ACd(x, y)(1+d(x,y)) for A =0, and
H(x,-) Lipschitz. Let u, —v be locally uniformly upper semicontinuous and locally bounded, with
u subsolution and v supersolution. Then supjy 71.qu —v < supq u(T,") —v(T,).
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Details on the comparison principle in CBB(0) spaces

We consider
—0su(t,x)+ H(x,D,v(t,x)) =0, u(T,)=3.

The notion of viscosity solution is based on semiconcave/semiconvex test functions.

THEOREM Assume H(y, —JLDydz(x, -))—H(x,/ledQ(‘,y)) < ACd(x,y)(1+d(x,y)) for A =0, and
H(x,-) Lipschitz. Let u, —v be locally uniformly upper semicontinuous and locally bounded, with
u subsolution and v supersolution. Then supjy 71.qu —v < supq u(T,") —v(T,).

Here

* “strong” upper semicontinuity is equivalent to B — suppg u upper semicontinuous in the
Hausdorff topology over nonempty compact sets.

* The argument employs the Ekeland-Borwein-Preiss-Zhu principle [BZ05].

* Growth conditions are avoided owing to the variable ¢ and a clever penalization from [FGS17].
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Details about the classification Tan,/Sol,

The equivalences

dw(u,exp,(h- &)

dyw(u,expy(h-0)
3 =0

h

(eTan, < }121{1(1) =€l and (eSol, & }13{1(1)

hold

e if ¢,{ are induced by maps;

* in dim 1, if p is purely atomic or absolutely continuous with respect to the Lebesgue measure.
All results in this directions are consequences of the following lemma:

Let ¢ € P2(T Q) such that limy\ o M = [¢llx. Then there exists (h,), \, 0 such that

lim sup dwra (y,€) =0.

naooye ﬁ -exppt(expy,(hy )
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Details on a counterexample to (Eg)

Decompose = mq 1% + mgpu?, with p® € Po(R) purely atomic and p¢ € Po(R) diffuse (atomless).

THEOREM One has
¢ {eTany if and only if ¢ = m & +mgfIp?, with ¢ € Po(TR),e and f9 € Lid (R; TR);

* (€ Sol, ifand only if { =m0 +mgl?, with (? € Po(TR),q centred.
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Details on a counterexample to (Eg)

Decompose = mq 1% + mgpu?, with p® € Po(R) purely atomic and p¢ € Po(R) diffuse (atomless).

THEOREM One has
¢ {eTany if and only if ¢ = m & +mgfIp?, with ¢ € Po(TR),e and f9 € Lid (R; TR);

* (€ Sol, ifand only if { =m0 +mgl?, with (? € Po(TR),q centred.

For p the Cantor measure,
_ Gd,-Dyp+Gd, Dgu
B 2

in Soly,. Let pj, == exp,(h-¢).

o=

¢

=
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Details on a counterexample to (Eg)

Decompose = mq 1% + mgpu?, with p® € Po(R) purely atomic and p¢ € Po(R) diffuse (atomless).

THEOREM One has
¢ {eTany if and only if ¢ = m & +mgfIp?, with ¢ € Po(TR),e and f9 € Lid (R; TR);

* (€ Sol, ifand only if { =m0 +mgl?, with (? € Po(TR),q centred.

For p the Cantor measure, 0
Gd,~Dgu+Gd, D M M
f = 2 9

in Soly,. Let pj, == exp,(h-¢).

=
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Details on a counterexample to (Eg)

Decompose 1= mg %+ mgp?, with p% € P3(R) purely atomic and p¢ € Po(R) diffuse (atomless).

THEOREM One has
¢ {eTany if and only if ¢ = m & +mgfIp?, with ¢ € Po(TR),e and f9 € Lid (R; TR);

* (€ Sol, ifand only if { =m0 +mgl?, with (? € Po(TR),q centred.

For p the Cantor measure, 0
_ Gd,-Dyp+Gd, Dyp 1
f = 2 9

in Soly,. Let pj, == exp,(h-¢).

=
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Details on a counterexample to (Eg)

Decompose 1= mg %+ mgp?, with p% € P3(R) purely atomic and p¢ € Po(R) diffuse (atomless).

THEOREM One has
¢ {eTany if and only if ¢ = m & +mgfIp?, with ¢ € Po(TR),e and f9 € Lid (R; TR);

* (€ Sol, ifand only if { =m0 +mgl?, with (? € Po(TR),q centred.

For p the Cantor measure, 0
_ Gd,-Dyp+Gd, Dgu
B 2

in Soly,. Let pj, == exp,(h-¢).

o=

¢

=

dyy (1 1n) _ dw (1, usn) h
h 3
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Details on a counterexample to (Eg)

THEOREM One has

Decompose = mq 1% + mgpu?, with p® € Po(R) purely atomic and p¢ € Po(R) diffuse (atomless).

Perspectives
o]

* (€ 8Sol, ifand only if { =m,0.q + mg(®, with (% e Q”Q(TR)M centred.

¢ {eTany if and only if ¢ = m & +mgfIp?, with ¢ € Po(TR),e and f9 € Lid (R; TR);

For p the Cantor measure,

P AW N Fa AW
. . £ Ay I \ e Ay I
¢ (id,—Dgp+(Gd, Dap 1 b W oL L4 W
= 9
2

in Soly,. Let pj, == exp,(h-¢).

dyy (1 1n) _ dw (1, usn)
h 3n

=
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Details on a counterexample to (Eg)

Decompose = mq 1% + mgpu?, with p® € Po(R) purely atomic and p¢ € Po(R) diffuse (atomless).

THEOREM One has

¢ {eTany if and only if ¢ = m & +mgfIp?, with ¢ € Po(TR),e and f9 € Lid (R; TR);
* (€ 8Sol, ifand only if { =m,0.q + mg(®, with (% e Q”Q(TR)M centred.

For p the Cantor measure,
_ Gd,-Dyp+Gd, Dgu
B 2

in Soly,. Let pj, == exp,(h-¢).

&:

dyy (1 1n) _ dw (1, usn)
h 3h
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Details on a counterexample to (Eg)

Decompose = mq 1% + mgpu?, with p® € Po(R) purely atomic and p¢ € Po(R) diffuse (atomless).

THEOREM One has
¢ {eTany if and only if ¢ = m & +mgfIp?, with ¢ € Po(TR),e and f9 € Lid (R; TR);

* (€ Sol, ifand only if { =m0 +mgl?, with (? € Po(TR),q centred.

For p the Cantor measure,

0.575

dw ()

(Gid,~ D+ Gd, Dap o\ 7%
&= 9 0.565
in Sol,,. Let uj, :=exp,(h-S). ::G“
dW (,LL, :uh) _ dW (/Juu3h) 00 02 03 04 05
R 3h h
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Details on the directional differentiability in CAT(0) spaces (1/3)

If R? is a one-dimensional network, with possibly junctions and loops,
(P2(R),dyy) does not have curvature bounds.

Question. Can we find directionally differentiable test functions?
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Details on the directional differentiability in CAT(0) spaces (1/3)

If R? is a one-dimensional network, with possibly junctions and loops,
(P2(R),dyy) does not have curvature bounds.

Question. Can we find directionally differentiable test functions?

Let € c AC([0,1];R?) be the set of unit-speed geodesics, and
ep : € — R the evaluation at time 4 €[0,1], i.e. en(Y)=1vp.

THEOREM Let & € P9(%) and 0 € Po(R%). Then

d2, ((en)sé,0)—d3 ((e0)sé,0)
A | 41 4%y(),2) daty,2).
AN\O h ael@,0)  Jiy2)eg xRE “" |,

(eq(my),m2)s opt.
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Details on the directional differentiability in CAT(0) spaces (2/3)

General strategy: bound the limit sup from above (easy) and the limit
inf from below (hard) by the same quantity.

d3, ((ep)sé,0) - d3, (1, 0) <f dz(yh,z)—d2(y0,z)da*
h h (y,2)€% xR h ’
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Details on the directional differentiability in CAT(0) spaces (2/3)

General strategy: bound the limit sup from above (easy) and the limit
inf from below (hard) by the same quantity.

d3, ((ep)sé,0) - d3, (1, 0) <f dz(yh,z)—d2(y0,z)da*
h h (y,2)€% xR h ’
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Details on the directional differentiability in CAT(0) spaces (2/3)

General strategy: bound the limit sup from above (easy) and the limit
inf from below (hard) by the same quantity.

d3, ((ep)sé,0) - d3, (1, 0) <f dz(yh,z)—d2(y0,z)da*
h h (y,2)€% xR h ’

Averil Aussedat Optimal control & HJB equations in curved spaces June 19, 2025



Perspectives
o]

Details on the directional differentiability in CAT(0) spaces (2/3)

General strategy: bound the limit sup from above (easy) and the limit
inf from below (hard) by the same quantity.

d3, ((ep)sé,0) - d3, (1, 0) <f dz(yh,z)—d2(y0,z)da*
h h (y,2)€% xR h ’
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Details on the directional differentiability in CAT(0) spaces (2/3)

General strategy: bound the limit sup from above (easy) and the limit
inf from below (hard) by the same quantity.

h h

S 0@ (),2)+0(h)

d3, ((ep)sé,0) - d3, (1, 0) <f dz(yh,z)—d2(y0,z)da*
= Jiy,2)e% xRd '

Averil Aussedat Optimal control & HJB equations in curved spaces June 19, 2025



Perspectives
o]

Details on the directional differentiability in CAT(0) spaces (2/3)

General strategy: bound the limit sup from above (easy) and the limit
inf from below (hard) by the same quantity.

d3, ((ep)sé,0) - d3 (1, 0) >f dz(yh,z)—d2(y0,z)da*
h - (y,2)€% xR4 h h:
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Details on the directional differentiability in CAT(0) spaces (2/3)

General strategy: bound the limit sup from above (easy) and the limit
inf from below (hard) by the same quantity.

d3, ((ep)sé,0) - d3 (1, 0) >f dz(yh,z)—d2(y0,z)da*
h - (y,2)€% xR4 h h:

2 2
InR% A — 47 0n2)=d"(00:2) jg Lipschitz. In networks, true for A < h?,yz.

One has to control the mass that a; puts on the problematic (y,2).
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Details on the directional differentiability in CAT(0) spaces (2/3)

General strategy: bound the limit sup from above (easy) and the limit
inf from below (hard) by the same quantity.

d3, ((ep)sé,0) - d3 (1, 0) >f dz(yh,z)—d2(y0,z)da*
h - (y,2)€% xR4 h h:

2 2
InR% A — 47 0n2)=d"(00:2) jg Lipschitz. In networks, true for A < h?,yz.

One has to control the mass that a; puts on the problematic (y,2).

* Junctions. No uniform estimate if 719 5[ contains a junction j.
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Details on the directional differentiability in CAT(0) spaces (2/3)

General strategy: bound the limit sup from above (easy) and the limit
inf from below (hard) by the same quantity.

d3, ((ep)sé,0) - d3 (1, 0) >f dz(yh,z)—d2(y0,z)da*
h - (y,2)€% xR4 h h:

*

1293

2 2
InR% A — 47 0n2)=d"(00:2) jg Lipschitz. In networks, true for A < h?,yz.

One has to control the mass that a; puts on the problematic (y,2).

* Junctions. No uniform estimate if 719 5[ contains a junction j.
~ However, the problematic y are issued from yg € %(j,h) \ {j}, and
0

a;, (such (y,2)) < u(BG, W\ {j}) o 0.
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Details on the directional differentiability in CAT(0) spaces (2/3)

General strategy: bound the limit sup from above (easy) and the limit
inf from below (hard) by the same quantity.

d3, ((ep)sé,0) - d3 (1, 0) >f dz(yh,z)—d2(y0,z)da*
h - (y,2)€% xR4 h h:

*

1293

2 2
InR% A — 47 0n2)=d"(00:2) jg Lipschitz. In networks, true for A < h?,yz.

One has to control the mass that a; puts on the problematic (y,2).

* Junctions. No uniform estimate if 719 5[ contains a junction j.
~ However, the problematic y are issued from yg € %(j,h) \ {j}, and
0

a;, (such (y,2)) < u(BG, W\ {j}) o 0.

Averil Aussedat Optimal control & HJB equations in curved spaces June 19, 2025



Perspectives
o]

Details on the directional differentiability in CAT(0) spaces (3/3)

* Loops. Here the estimate fails on (y,z) such that yj | contains —z. N
d* (- 2)
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Details on the directional differentiability in CAT(0) spaces (3/3)

* Loops. Here the estimate fails on (y,z) such that yj | contains —z. N
d* (-, 2)
* Assume a; puts mass (>0 on the bad set uniformly in A.

e Let By, be (ep ony,nz)#a;"l conditioned on this set, with narrow limit g.
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Details on the directional differentiability in CAT(0) spaces (3/3)

* Loops. Here the estimate fails on (y,z) such that yj | contains —z.

d*(- 2)
* Assume a; puts mass (>0 on the bad set uniformly in A.
e Let By, be (ep ony,nz)#a;"l conditioned on this set, with narrow limit g.
* fBis optimal and concentrated on pairs (—z,2).
z
_zo _zl
zZ1 20
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Details on the directional differentiability in CAT(0) spaces (3/3)

* Loops. Here the estimate fails on (y,z) such that yj | contains —z.

d*(- 2)
* Assume a; puts mass (>0 on the bad set uniformly in A.
e Let By, be (ep ony,nz)#a;"l conditioned on this set, with narrow limit g.
e fis optimal and concentrated on pairs (-z,2). Hence =6, 2.
z
_zo
20
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Details on the directional differentiability in CAT(0) spaces (3/3)

* Loops. Here the estimate fails on (y,z) such that yj | contains —z.

d*(- 2)
* Assume a; puts mass (>0 on the bad set uniformly in A.
e Let By, be (ep ony,nz)#a;"l conditioned on this set, with narrow limit g.
e fis optimal and concentrated on pairs (-z,2). Hence =6, 2.
® Ty#Pr — 02y, and mys P < oy by contraposition, 7,65 ({z0}) — 1. Z.
_zo
20
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Details on the directional differentiability in CAT(0) spaces (3/3)

* Loops. Here the estimate fails on (y,z) such that yj | contains —z.

d*(- 2)
* Assume a; puts mass (>0 on the bad set uniformly in A.
e Let By, be (ep ony,nz)#a;"l conditioned on this set, with narrow limit g.
e fis optimal and concentrated on pairs (-z,2). Hence =6, 2.
® Ty#Pr — 02y, and mys P < oy by contraposition, 7,65 ({z0}) — 1. Z.
_zo
20
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Details on the directional differentiability in CAT(0) spaces (3/3)

* Loops. Here the estimate fails on (y,z) such that yj | contains —z.

d*(- 2)
* Assume a; puts mass (>0 on the bad set uniformly in A.
e Let By, be (ep ony,nz)#a;"l conditioned on this set, with narrow limit g.
e fis optimal and concentrated on pairs (-z,2). Hence =6, 2.
® Ty#Pr — 02y, and mys P < oy by contraposition, 7,65 ({z0}) — 1. Z.
_zo
20
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Details on the directional differentiability in CAT(0) spaces (3/3)

* Loops. Here the estimate fails on (y,z) such that yj | contains —z.

d*(- 2)
* Assume a; puts mass (>0 on the bad set uniformly in A.
* Let By be (epo ny,nz)#a;"l conditioned on this set, with narrow limit g.
e fis optimal and concentrated on pairs (-z,2). Hence =6, 2.
* TyuPr — 0z, and myu P, < 1" lo; by contraposition, 7y Pr({zo}) — 1. Z
Hence for small A, a;; puts mass é on the bad (y,z) for z = 2 fixed. _%
20
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Details on the directional differentiability in CAT(0) spaces (3/3)

* Loops. Here the estimate fails on (y,z) such that yj | contains —z. N
d*(+, 2)
* Assume a; puts mass (>0 on the bad set uniformly in A.
* Let By be (epo ny,nz)#a;"l conditioned on this set, with narrow limit g.
e fis optimal and concentrated on pairs (-z,2). Hence =6, 2.
* TyuPr — 0z, and myu P, < 1" lo; by contraposition, 7y Pr({zo}) — 1. Z
Hence for small A, a;; puts mass é on the bad (y,z) for z = 2 fixed.

. =20
As before, all such y are issued from y¢ near —z¢, and

< aj, (such (y,z0)) < p(B(=z0,h) \ {—20}) N 0.

N | =

20
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Details on the directional differentiability in CAT(0) spaces (3/3)

* Loops. Here the estimate fails on (y,z) such that yj | contains —z.

* Assume a; puts mass (>0 on the bad set uniformly in A.

* Let By be (epo ny,nz)#a;"l conditioned on this set, with narrow limit g.

e fis optimal and concentrated on pairs (-z,2). Hence =6, 2.

* TyPn — 02, and myy P < 1" lo; by contraposition, 7y Brzo}) — 1. z

Hence for small A, a;; puts mass é on the bad (y,z) for z = 2 fixed.

. =20
As before, all such y are issued from y¢ near —z¢, and

< aj, (such (y,z0)) < p(B(=z0,h) \ {—20}) N 0.

N | =
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Details on the directional differentiability in CAT(0) spaces (3/3)

* Loops. Here the estimate fails on (y,z) such that yj | contains —z.

* Assume a; puts mass (>0 on the bad set uniformly in A.

* Let By be (epo ny,nz)#a;"l conditioned on this set, with narrow limit g.

e fis optimal and concentrated on pairs (-z,2). Hence =6, 2.

* TyPn — 02, and myy P < 1" lo; by contraposition, 7y Brzo}) — 1. z

Hence for small A, a;; puts mass é on the bad (y,z) for z = 2 fixed. —z
As before, all such y are issued from y¢ near —z¢, and %

< aj, (such (y,z0)) < p(B(=z0,h) \ {—20}) N 0.

N | =

* Conclusion. The bad set vanishes, d%v(-,v) directionally differentiable. 20
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