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Introduction

Optimal control problem: Let T > 0 and x ∈Ω.

For u : [t,T]→U , solve ẏs = f (ys,u(s)) with yt = x,

minimize J (yT ) over admissible u(·).
Of particular interest is the value function

V (t, x) := inf
u∈Adm([t,T];U)

J
(
yt,x,u

T

)
.

Hamilton-Jacobi-Bellman equation:{
−∂tv(t, x)+H (x,Dxv(t, x))= 0 [0,T)×Ω,

v(T, ·)= J Ω.

with Hamiltonian H(x, p) := supb∈ f (x,U)−p(b).

Solution taken in the viscosity sense [CL83].

General context: Investigation of (such) PDEs on spaces lacking a vector structure.

Networks & ramified spaces
[ACCT13, CM13, CSM13,
IMZ13, RZ13, BBC14,
LS17, IM17, BC24, JZ23].

Metric viscosity relying on metric
slopes [AF14, GŚ15], one-sided
metric slopes [LSZ25] or
pathwise conditions [GHN15].

Control of measures [CQ08,
GNT08, HK15, CMNP18,
JMQ20, JMQ23, JJZ24] in
Wasserstein spaces.
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For u : [t,T]→U , solve ẏs = f (ys,u(s)) with yt = x,

minimize J (yT ) over admissible u(·).
Of particular interest is the value function

V (t, x) := inf
u∈Adm([t,T];U)

J
(
yt,x,u

T

)
.

Hamilton-Jacobi-Bellman equation:{
−∂tv(t, x)+H (x,Dxv(t, x))= 0 [0,T)×Ω,

v(T, ·)= J Ω.

with Hamiltonian H(x, p) := supb∈ f (x,U)−p(b).
Solution taken in the viscosity sense [CL83].

General context: Investigation of (such) PDEs on spaces lacking a vector structure.

Networks & ramified spaces
[ACCT13, CM13, CSM13,
IMZ13, RZ13, BBC14,
LS17, IM17, BC24, JZ23].

Metric viscosity relying on metric
slopes [AF14, GŚ15], one-sided
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slopes [AF14, GŚ15], one-sided
metric slopes [LSZ25] or
pathwise conditions [GHN15].

Control of measures [CQ08,
GNT08, HK15, CMNP18,
JMQ20, JMQ23, JJZ24] in
Wasserstein spaces.

Averil Aussedat Optimal control & HJB equations in curved spaces June 19, 2025 1 / 10



Introduction Control in CAT(0) HJB in CBB(0) Some results in P2(Rd ) Perspectives

Introduction

Optimal control problem: Let T > 0 and x ∈Ω.
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Contributions of the thesis

On optimal control of populations
• Traffic network, one driver: In CAT(0) spaces,

preprint with H. Zidani

• optimal control problems, relaxation,

• Hamilton-Jacobi-Bellman formulation based on [JZ23],
• numerical analysis of a semi-Lagrangian scheme.

• Euclidean space, crowds: In CBB(0) spaces,

[AJZ24], preprint with C. Hermosilla
• comparison principle with continuous H,
• applications to control problems in the Wasserstein space.

• Traffic network, crowds: In P2(network), directional differentiability of the squared distance.

On the geometry of the Wasserstein space [Aus25], one in preparation
• Orthogonal decompositions: Closed convex cones of centred measure fields.

• Classification of tangent fields: Partial results, counterexample in the general case.

• Decomposition: Following the structure of the tangent cone.
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Optimal control in CAT(0) spaces

Let (Ω,d) be a complete CAT(0) space (hyperbolic manifold, metric tree...).

Importantly, geodesic space with d2(·, z) 2-convex for z ∈Ω.

How to define dynamical systems?
• A curve y(·) may have a right derivative y+t ∈TytΩ, but difficult to compare between times.

• Gradient flows in CAT(0) [May98, AKP23]: if E :Ω→R Lipschitz concave, yields GFE :R+×Ω→Ω.

• Mutations in metric spaces [Aub99, FL23], with “generalized derivatives” ẙt.

Def Let E be a subset of Lipschitz concave functions from Ω to R, and f : Ωâ E .

A curve
y ∈AC([0,T];Ω) is a solution of ẙt∩ f (yt) ̸= ; if for almost any t, there exists E ∈ f (yt) such that

d(yt+h,GFE(h, yt))= o(h).

Combining properties of gradient flows and mutations, well-posedness.
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Def Let E be a subset of Lipschitz concave functions from Ω to R, and f : Ωâ E .

A curve
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Existence in the optimal control problem

In Rd , the set of solutions of ẏs ∈ f (ys) is closed if f (x) is closed and convex (Filippov-Aumann).

Def Define conv f (x) in Lipschitz DC functions endowed with ∥ ·∥1,∞.

THEOREM Assume f :Ωâ E locally Lipschitz with linear growth. The set of trajectories of
conv f issued from x ∈Ω is compact, and is the closure in AC([0,T];Ω) of the trajectories of f .

Usual argument:

• consider a sequence (yn, ẏn)n of solutions,

• extract of a strong-weak limit (y,b),

• show that yt = x+∫ t
0 bsds and bs ∈ conv f (ys).

Here y+n (s) ∈Tyn(s)Ω, not Hilbert. Reformulation:

. The “EVIs” are linear with respect to E.

Proposition For such f , y solves ẙt ∩
f (yt) ̸= ; iff some measurable selection
(E t)t of t 7→ f (yt) satisfies

d
dt

d2(yt, z)
2

É E t(yt)−E t(z) ∀z, for a.e. t.
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• extract of a strong-weak limit (y,b),

• show that yt = x+∫ t
0 bsds and bs ∈ conv f (ys).

Here y+n (s) ∈Tyn(s)Ω, not Hilbert. Reformulation:

. The “EVIs” are linear with respect to E.

Proposition For such f , y solves ẙt ∩
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Viscosity solutions in CBB(0) spaces

Let now (Ω,d) have curvature bounded from below, as spheres, quotients of Hilberts by isometries...

Importantly, d2(·, z) semiconcave for z ∈Ω. Aim: give meaning to

(HJ) −∂tv(t, x)+H(x,Dxv(t, x))= 0, v(T, ·)= J.

Here

• H is defined on pairs (x, p), with x ∈Ω and p : TxΩ→R Lipschitz and positively homogeneous,

• Dxv : TxΩ→R is the application of directional derivatives.

Def A locally uniformly continuous function v is a viscosity solution of (HJ) if it is both a if
ϕ is C2 in time, in space, and touches v from at (t, x),

−∂tϕ(t, x)+H
(
x,Dxϕ(t, x)

)
0.

This definition supports a strong comparison principle (Theorem 3.1.12, [AJZ24]).
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Application to the Wasserstein space

(
P2(Rd),dW

)
is CBB(0), so we can turn to the Mayer problem

Minimize J(µ0,ν,u
T ) over u ∈ L1(0,T;U), subject to ∂sµs + div

(
f [µs,u(s)] ·µs

)= 0 and µ0 = ν.

Existing approaches: L-differentiable functions, semidifferentials, metric tools.

Issue: the dynamic f [µ,u] is a priori not valued in
the geometric tangent cone Tµ.

Lemma For any b ∈ L2
µ(Rd ;TRd), there exists

b′ ∈Tµ∩L2
µ such that

lim
h↘0

dW ((id+hb)#µ, (id+hb′)#µ)
h

= 0.

THEOREM Assume f ,J Lipschitz.
Then the value function V is the unique
viscosity solution of{

−∂tv(t,µ)+H
(
µ,Dµv(t,µ)

)= 0
v(T, ·)= J

where H(µ, p) := supb∈conv f [µ,U]−p(πµT b).
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Tangent and solenoidal fields, based on [Gig08]

• Metric scalar product. Fix µ ∈P2(Rd). For ξ,ζ ∈P2(TRd)µ,

let

Γµ (ξ,ζ) := {
α=α(dx,dv,dw)

∣∣ (πx,πv)#α= ξ, (πx,πw)#α= ζ}
,

W2
µ (ξ,ζ) := inf

α∈Γµ(ξ,ζ)

∫
(x,v,w)

|v−w|2dα,

〈ξ,ζ〉µ := 1
2

[
∥ξ∥2

µ+∥ζ∥2
µ−W2

µ (ξ,ζ)
]
= sup
α∈Γµ(ξ,ζ)

∫
(x,v,w)

〈v,w〉dα.

Def The tangent cone Tanµ is

{
λ ·ξ ∈P2(TRd)µ

∣∣ (πx,πx +πv)#ξ opt, λÊ 0
}Wµ

.

Def The solenoidal cone Solµ is{
ζ ∈P2(TRd)µ

∣∣∣ 〈ξ,ζ〉µ = 0 ∀ξ ∈Tanµ

}
.
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Classification

Denote by h 7→ expµ(h ·ξ) := (πx+hπv)#ξ the exponential of ξ ∈P2(TRd)µ.

Proposition If ξ= f#µ for f ∈ L2
µ(Rd ;TRd),

(ET)

(ES)

ξ ∈Tanµ ⇔ lim
h↘0

dW (µ,expµ(h ·ξ))
h

= ∥ξ∥µ:=
√∫

|v|2dξ,

ξ ∈Solµ ⇔ lim
h↘0

dW (µ,expµ(h ·ξ))
h

= 0.

Yields dW
(
expµ(h · f#µ),expµ(h ·πµT f#µ)

)= o(h), hence the post-it lemma.

Further precisions in dimension one:
• (ET) and (ES) hold if µ is purely atomic or absolutely continuous.

• Neither (ET) or (ES) holds in general.
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Decomposition of a measure

Remark If ξ,ζ ∈ P2(TRd)µ are centred,
〈ξ,ζ〉µ = 0 if and only if 〈ξx,ζx〉δx = 0 µ−a.e..

Indeed, choosing centred disintegrations,

0= 〈ξ,ζ〉µ =
∫

x∈Rd
〈ξx,ζx〉δx︸ ︷︷ ︸

Ê0

dµ.

Proposition Let µ = ∑
k mkµ

k, with µk

mutually singular.

Then

• ζ ∈Sol0
µ iff ζ=∑

k mkζ
k, with ζk ∈Sol0

µk ,

• ξ ∈Tan0
µ iff ξ=∑

k mkξ
k, with ξk ∈Tan0

µk .

Agree that A⊂P2(TRd)0µ has dim k if there exists x 7→ Dk(x)⊂TxRd

vector spaces of dim k such that ξ ∈A if and only if ξ−a.e. v ∈ Dk(x).

THEOREM Any µ writes as
∑d

k=0 mkµ
k, where

• Sol0
µ =∑d

k=0 mk Sol0
µk , with Sol0

µk of dimension k,

• Tan0
µ =

∑d
k=0 mk Tan0

µk , with Tan0
µk of dimension d−k.
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Some perspectives

Semiconcave & L-differentiable

In P2(Rd), viscosity solutions

• based on the regular directions;

• based on the geometric ones.

For instance, ϕ := d2
W

(
·, δ−1+δ1

2

)
has

• regular superdifferential {0} at δ0,

• geometric one conv
{
δ0,−1+δ0,1

2

}
.

Q.
For which Hamiltonians H are
both definitions equivalent?

Complete decomposition

Conjecture: the decomposition µ=∑d
k=0 mkµ

k satisfies

• µk is concentrated on countably many
c – c hypersurfaces of dimension k,

• µk gives 0 mass to c – c hypersurfaces of dim k−1.

Hence µ0 would be the atoms, µ1 concentrated on c – c
curves, etc...

Other tangent cones

Similar yet distinct decompositions and spaces exist in
relation with Lipschitz functions [BCJ05, AM16]. Any
link?
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Thank you!
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Details on the HJB formulation in CAT(0) spaces

Let H : (x, p) 7→ supϕ∈conv f (x)−p(∇xϕ), and consider the following Hamilton-Jacobi-Bellman equation:

(HJB) −∂tv+H(x,Dxv(t, x))= 0, v(T, ·)= J.

Def [JZ23] A viscosity solution v ∈ C([0,T]×Rd ;R) of (HJB) is both a
subsolution: if ϕ is C2 in time, semiconvex in space, and touches v from above at (t, x),

−∂tϕ(t, x)+H
(
x,Dxϕ(t, x)

) ÉÉÉ 0.

Under the technical assumption [A2.1.3] to approximate the
gradient flows of functions in E by geodesics, the following holds.

Proposition Assume f , J Lipschitz and bounded. Then
V is the unique viscosity solution of (HJB).
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Details on the convexification procedure

A dynamic f is valued in a set E ⊂Lip(Rd ;R) of concave functions. Its closed convex hull is defined in
the Banach space E of limit points of Lipschitz DC functions, quotiented by constants, with respect to

∥ϕ∥1,∞ := sup
(x,v)∈TRd ,|v|x=1

∣∣Dxϕ(v)
∣∣ .

Proposition Assume that each ϕ ∈ E
satisfies Dxϕ = 〈∇xϕ,·〉x. If (yt)t solves ẙt ∋∫
ϕ∈E ϕdωs(ϕ) for ω ∈ L1(0,T;P1(E)), then

y+t =BaryTyt Rd
(∇yt#ωt

)
a.e. in [0,T].
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Details on the comparison principle in CBB(0) spaces

We consider
−∂tv(t, x)+H(x,Dxv(t, x))= 0, v(T, ·)= J.

The notion of viscosity solution is based on semiconcave/semiconvex test functions.

THEOREM Assume H(y,−λD yd2(x, ·))−H(x,λDxd2(·, y))ÉλCd(x, y)(1+d(x, y)) for λÊ 0, and
H(x, ·) Lipschitz. Let u,−v be locally uniformly upper semicontinuous and locally bounded, with
u subsolution and v supersolution. Then sup[0,T]×Ω u−v É supΩ u(T, ·)−v(T, ·).

Here

• “strong” upper semicontinuity is equivalent to B 7→ supB u upper semicontinuous in the
Hausdorff topology over nonempty compact sets.

• The argument employs the Ekeland-Borwein-Preiss-Zhu principle [BZ05].

• Growth conditions are avoided owing to the variable t and a clever penalization from [FGŚ17].
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Details about the classification Tanµ /Solµ
The equivalences

ξ ∈Tanµ ⇔ lim
h↘0

dW (µ,expµ(h ·ξ))
h

= ∥ξ∥µ and ζ ∈Solµ ⇔ lim
h↘0

dW (µ,expµ(h ·ζ))
h

= 0

hold

• if ξ,ζ are induced by maps;

• in dim 1, if µ is purely atomic or absolutely continuous with respect to the Lebesgue measure.

All results in this directions are consequences of the following lemma:

Let ξ ∈P2(TΩ)µ such that limh↘0
dW (µ,expµ(h·ξ))

h = ∥ξ∥µ. Then there exists (hn)n ↘ 0 such that

lim
n→∞ sup

γ∈ 1
hn

·exp−1
µ (expµ(hn·ξ))

dW ,TΩ
(
γ,ξ

)= 0.
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Details on a counterexample to (ES)

Decompose µ= maµ
a +mdµ

d , with µa ∈P2(R) purely atomic and µd ∈P2(R) diffuse (atomless).

THEOREM One has

• ξ ∈Tanµ if and only if ξ= maξ
a +md f d

# µ
d , with ξa ∈P2(TR)µa and f d ∈ L2

µd (R;TR);

• ζ ∈ Solµ if and only if ζ= ma0µa +mdζ
d , with ζd ∈P2(TR)µd centred.

For µ the Cantor measure,

ξ := (id,−1)#µ+ (id,1)#µ
2

in Solµ. Let µh := expµ(h ·ξ).

dW
(
µ,µh

)
h

= dW
(
µ,µ3h

)
3h

.
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Introduction Control in CAT(0) HJB in CBB(0) Some results in P2(Rd ) Perspectives

Details on the directional differentiability in CAT(0) spaces (1/3)

If Rd is a one-dimensional network, with possibly junctions and loops,(
P2(Rd),dW

)
does not have curvature bounds.

Question. Can we find directionally differentiable test functions?

Let G⊂AC([0,1];Rd) be the set of unit-speed geodesics, and
eh :G→Rd the evaluation at time h ∈ [0,1], i.e. eh(γ)= γh.

THEOREM Let ξ ∈P2(G) and σ ∈P2(Rd). Then

lim
h↘0

d2
W ((eh)#ξ,σ)−d2

W ((e0)#ξ,σ)

h
= inf

α∈Γ(ξ,σ)
(e0(πγ),πz)#α opt.

∫
(γ,z)∈G×Rd

d
dh

∣∣∣
h=0

d2(γ(·), z) dα(γ, z).
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Introduction Control in CAT(0) HJB in CBB(0) Some results in P2(Rd ) Perspectives

Details on the directional differentiability in CAT(0) spaces (2/3)

General strategy: bound the limit sup from above (easy) and the limit
inf from below (hard) by the same quantity.

d2
W ((eh)#ξ,σ)−d2

W (µ,σ)

h
É

∫
(γ,z)∈G×Rd

d2(γh, z)−d2(γ0, z)
h︸ ︷︷ ︸

d
dh |h=0d2(γ(·),z)+O(h)

dα∗.

In Rd , h 7→ d2(γh,z)−d2(γ0,z)
h is Lipschitz. In networks, true for h É h0

γ,z.
One has to control the mass that α∗

h puts on the problematic (γ, z).

• Junctions. No uniform estimate if γ]0,h[ contains a junction j.
However, the problematic γ are issued from γ0 ∈B( j,h)\{ j}, and

α∗
h
(
such (γ, z)

)Éµ(
B( j,h)\{ j}

) −→
h↘0

0.
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Introduction Control in CAT(0) HJB in CBB(0) Some results in P2(Rd ) Perspectives

Details on the directional differentiability in CAT(0) spaces (3/3)

• Loops. Here the estimate fails on (γ, z) such that γ]0,h[ contains −z.

• Assume α∗
h puts mass ι> 0 on the bad set uniformly in h.

• Let βh be (eh ◦πγ,πz)#α∗
h conditioned on this set, with narrow limit β.

• β is optimal and concentrated on pairs (−z, z).

Hence β= δ(−z0,z0).

• πy#βh → δz0 , and πy#βh É ι−1σ; by contraposition, πy#βh({z0})→ 1.

Hence for small h, α∗
h puts mass ι

2 on the bad (γ, z) for z = z0 fixed.
As before, all such γ are issued from γ0 near −z0, and

ι

2
Éα∗

h
(
such (γ, z0)

)Éµ(
B(−z0,h)\{−z0}

) −→
h↘0

0.

• Conclusion. The bad set vanishes, d2
W (·,ν) directionally differentiable.
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h puts mass ι> 0 on the bad set uniformly in h.

• Let βh be (eh ◦πγ,πz)#α∗
h conditioned on this set, with narrow limit β.

• β is optimal and concentrated on pairs (−z, z). Hence β= δ(−z0,z0).

• πy#βh → δz0 , and πy#βh É ι−1σ; by contraposition, πy#βh({z0})→ 1.

Hence for small h, α∗
h puts mass ι

2 on the bad (γ, z) for z = z0 fixed.
As before, all such γ are issued from γ0 near −z0, and
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) −→
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