Decomposition of a measure according to Wasserstein tangent cones

Averil Aussedat Post-doc at University of Pisa

December 11, 2025 Séminaire de Modélisation et d'Analyse Appliquée, Toulon

Table of Contents

Introduction

Previous literature on this problen

Result

Wasserstein distance

Denote

• $\mathscr{P}_2(\Omega)$ the set of nonnegative Borel probability measures μ such that $\int_{x\in\Omega}|x|^2\mu<\infty$,

0000

Wasserstein distance

- $\mathscr{P}_2(\Omega)$ the set of nonnegative Borel probability measures μ such that $\int_{x\in\Omega}|x|^2\mu<\infty$,
- $\Gamma(\mu, \nu) := \{ \eta \in \mathscr{P}(\Omega^2) \mid \pi_{x\#} \eta = \mu, \ \pi_{y\#} \eta = \nu \},$

9000

Wasserstein distance

- $\mathscr{P}_2(\Omega)$ the set of nonnegative Borel probability measures μ such that $\int_{x\in\Omega} |x|^2 \mu < \infty$,
- $\Gamma(\mu, \nu) := \{ \eta \in \mathscr{P}(\Omega^2) \mid \pi_{x\#} \eta = \mu, \ \pi_{y\#} \eta = \nu \},$
- $W(\mu, \nu)$ the Wasserstein distance, defined as

$$W^{2}(\mu,\nu) := \inf_{\eta \in \Gamma(\mu,\nu)} \int_{(x,y)} |y-x|^{2} d\eta.$$

9000

Wasserstein distance

- $\mathscr{P}_2(\Omega)$ the set of nonnegative Borel probability measures μ such that $\int_{x\in\Omega}|x|^2\mu<\infty$,
- $\Gamma(\mu, \nu) := \{ \eta \in \mathscr{P}(\Omega^2) \mid \pi_{x\#} \eta = \mu, \ \pi_{y\#} \eta = \nu \},$
- $W(\mu, \nu)$ the Wasserstein distance, defined as

$$W^{2}(\mu,\nu) := \inf_{\eta \in \Gamma(\mu,\nu)} \int_{(x,y)} |y - x|^{2} d\eta.$$

9000

Wasserstein distance

- $\mathscr{P}_2(\Omega)$ the set of nonnegative Borel probability measures μ such that $\int_{x\in\Omega} |x|^2 \mu < \infty$,
- $\Gamma(\mu, \nu) := \{ \eta \in \mathscr{P}(\Omega^2) \mid \pi_{x\#} \eta = \mu, \ \pi_{y\#} \eta = \nu \},$
- $W(\mu, \nu)$ the Wasserstein distance, defined as

$$W^{2}(\mu,\nu) := \inf_{\eta \in \Gamma(\mu,\nu)} \int_{(x,y)} |y - x|^{2} d\eta.$$

One "moves around" $\mu \in \mathscr{P}_2(\Omega)$ along the curves

$$h \mapsto (\pi_x + h\pi_v)_{\#}\xi,$$

where $\xi = \xi(dx, dv) \in \mathscr{P}_2(T\Omega)_{\mu}$ satisfies $\pi_{x\#}\xi = \mu$.

One "moves around" $\mu \in \mathscr{P}_2(\Omega)$ along the curves

$$h \mapsto (\pi_x + h\pi_v)_{\#}\xi,$$

where
$$\xi = \xi(dx, dv) \in \mathscr{P}_2(\mathrm{T}\,\Omega)_\mu$$
 satisfies $\pi_{x\#}\xi = \mu$.

Introduction

0000

One "moves around" $\mu \in \mathscr{P}_2(\Omega)$ along the curves

$$h \mapsto (\pi_x + h\pi_v)_{\#}\xi,$$

where $\xi = \xi(dx, dv) \in \mathscr{P}_2(\mathrm{T}\,\Omega)_\mu$ satisfies $\pi_{x\#}\xi = \mu$.

Introduction

0000

One "moves around" $\mu \in \mathscr{P}_2(\Omega)$ along the curves

$$h \mapsto (\pi_x + h\pi_v)_{\#}\xi,$$

where $\xi = \xi(dx, dv) \in \mathscr{P}_2(T\Omega)_{\mu}$ satisfies $\pi_{x\#}\xi = \mu$.

Introduction

0000

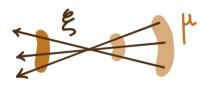
The set $\mathscr{P}_2(T\Omega)_{\mu}$ can be endowed with Definition

• a distance:
$$W_{\mu}: (\xi, \zeta) \mapsto \sqrt{\int_{x \in \Omega} W^2(\xi_x, \zeta_x) d\mu(x)}$$
, with $\xi = \xi_x \otimes \mu$ and $\zeta = \zeta_x \otimes \mu$;

One "moves around" $\mu \in \mathscr{P}_2(\Omega)$ along the curves

$$h \mapsto (\pi_x + h\pi_v)_{\#}\xi,$$

where $\xi = \xi(dx, dv) \in \mathscr{P}_2(T\Omega)_\mu$ satisfies $\pi_{x\#}\xi = \mu$.



Introduction

Definition The set $\mathscr{P}_2(T\Omega)_{\mu}$ can be endowed with

- a distance: $W_{\mu}: (\xi, \zeta) \mapsto \sqrt{\int_{x \in \Omega} W^2(\xi_x, \zeta_x) d\mu(x)}$, with $\xi = \xi_x \otimes \mu$ and $\zeta = \zeta_x \otimes \mu$;
- a scalar product: $\langle \xi, \zeta \rangle_{\mu} := \int_{x \in \Omega} \langle \xi_x, \zeta_x \rangle_x d\mu(x)$, with

$$\langle \xi_x, \zeta_x \rangle_x = \sup_{\eta_x \in \Gamma(\xi_x, \zeta_x)} \int_{(v,w)} \langle v, w \rangle \, d\eta_x.$$

Case of map-induced measure fields

If
$$\xi_i=(id,f_i)_{\#}\mu$$
 for $f_0,f_1\in L^2_\mu(\Omega;\mathbb{R}^d)$, then
$$\langle \xi_0,\xi_1\rangle_\mu=\langle f_0,f_1\rangle_{L^2_\mu}\,.$$

0000

Orthogonality and centred fields

Case of map-induced measure fields

If $\xi_i = (id, f_i)_{\#}\mu$ for $f_0, f_1 \in L^2_{\mu}(\Omega; \mathbb{R}^d)$, then

$$\langle \xi_0, \xi_1 \rangle_{\mu} = \langle f_0, f_1 \rangle_{L^2_{\mu}}.$$

In general, define the barycenter map as

Bary
$$(\xi)(x) = \int_{v} v d\xi_x(v)$$
.

Case of map-induced measure fields

If $\xi_i = (id, f_i)_{\#}\mu$ for $f_0, f_1 \in L^2_{\mu}(\Omega; \mathbb{R}^d)$, then

$$\langle \xi_0, \xi_1 \rangle_{\mu} = \langle f_0, f_1 \rangle_{L^2_{\mu}}.$$

In general, define the barycenter map as

Bary
$$(\xi)(x) = \int_{v} v d\xi_x(v)$$
.

Then, for any $f \in L^2_{\mu}$,

$$\langle (id,f)_{\#}\mu,\xi\rangle_{\mu} = \langle f, \mathsf{Bary}\,(\xi)\rangle_{L^2_{\mu}}\,.$$

Case of map-induced measure fields

If $\xi_i = (id, f_i)_{\#}\mu$ for $f_0, f_1 \in L^2_{\mu}(\Omega; \mathbb{R}^d)$, then

$$\langle \xi_0, \xi_1 \rangle_{\mu} = \langle f_0, f_1 \rangle_{L^2_{\mu}}.$$

In general, define the barycenter map as

Bary
$$(\xi)(x) = \int_{v} v d\xi_x(v)$$
.

Then, for any $f \in L^2_\mu$,

$$\left\langle (id,f)_{\text{\#}}\mu,\xi\right\rangle _{\mu}=\left\langle f,\mathsf{Bary}\left(\xi\right)\right\rangle _{L_{\mu}^{2}}.$$

Case of centred measure fields

Let $\mathscr{P}_2(\mathrm{T}\,\Omega)^0_\mu$ be the set of ξ with Bary $(\xi)=0$.

Introduction

0000

Case of map-induced measure fields

If
$$\xi_i=(id,f_i)_{\#}\mu$$
 for $f_0,f_1\in L^2_{\mu}(\Omega;\mathbb{R}^d)$, then

$$\langle \xi_0, \xi_1 \rangle_{\mu} = \langle f_0, f_1 \rangle_{L^2_{\mu}} .$$

In general, define the barycenter map as

Bary
$$(\xi)(x) = \int_{v} v d\xi_x(v)$$
.

Then, for any $f \in L^2_\mu$,

$$\left\langle (id,f)_{\#}\mu,\xi\right\rangle _{\mu}=\left\langle f,\mathsf{Bary}\left(\xi\right)\right\rangle _{L_{u}^{2}}.$$

Case of centred measure fields

Let $\mathscr{P}_2(\mathrm{T}\,\Omega)^0_\mu$ be the set of ξ with Bary $(\xi)=0$. Then, if $\xi, \zeta \in \mathscr{P}_2(T\Omega)^0_{\mu}$,

Introduction

0000

$$\langle \xi, \zeta \rangle_{\mu} = 0 \quad \Longleftrightarrow \quad \langle \xi_{x}, \zeta_{x} \rangle_{x} = 0$$

$$\mu - \text{a.e.}.$$

Case of map-induced measure fields

If
$$\xi_i=(id,f_i)_{\#}\mu$$
 for $f_0,f_1\in L^2_\mu(\Omega;\mathbb{R}^d)$, then
$$\langle \xi_0,\xi_1\rangle_\mu=\langle f_0,f_1\rangle_{L^2}\;.$$

In general, define the barycenter map as

Bary
$$(\xi)(x) = \int_{v} v d\xi_x(v)$$
.

Then, for any $f \in L^2_\mu$,

$$\left\langle (id,f)_{\#}\mu,\xi\right\rangle _{\mu}=\left\langle f,\mathsf{Bary}\left(\xi\right)\right\rangle _{L_{u}^{2}}.$$

Case of centred measure fields

Let $\mathscr{P}_2(\mathrm{T}\Omega)^0_\mu$ be the set of ξ with Bary $(\xi)=0$. Then, if $\xi, \zeta \in \mathscr{P}_2(T\Omega)^0_{\mu}$,

Introduction

0000

$$\langle \xi, \zeta \rangle_{\mu} = 0 \quad \Longleftrightarrow \quad \langle \xi_{x}, \zeta_{x} \rangle_{x} = 0$$

$$\mu - \text{a.e.}.$$

Orthogonality of centred fields is local.

Case of map-induced measure fields

If $\xi_i = (id, f_i)_{\#}\mu$ for $f_0, f_1 \in L^2_{\mu}(\Omega; \mathbb{R}^d)$, then

$$\langle \xi_0, \xi_1 \rangle_{\mu} = \langle f_0, f_1 \rangle_{L^2_{\mu}} .$$

In general, define the barycenter map as

Bary
$$(\xi)(x) = \int_{v} v d\xi_x(v)$$
.

Then, for any $f \in L^2_\mu$,

$$\langle (id,f)_{\#}\mu,\xi\rangle_{\mu} = \langle f, \mathsf{Bary}\,(\xi)\rangle_{L^2_{\mu}}\,.$$

Case of centred measure fields

Let $\mathscr{P}_2(\mathrm{T}\Omega)^0_\mu$ be the set of ξ with Bary $(\xi)=0$. Then, if $\xi, \zeta \in \mathscr{P}_2(T\Omega)^0_{\mu}$,

Introduction

$$\langle \xi, \zeta \rangle_{\mu} = 0 \quad \Longleftrightarrow \quad \langle \xi_{x}, \zeta_{x} \rangle_{x} = 0$$

$$\mu - \text{a.e.}.$$

Orthogonality of centred fields is local.

What can we say on centred + "optimal" fields?

0000

Examples

Definition – **Centred tangent measure fields** $\xi \in \mathscr{P}_2(T\Omega)^0_u$ is tangent if there exists optimal plans $(\eta_n)_n$ with first marginal μ , and $(h_n)_n \subset [1,\infty)$, such that $(\pi_x + h_n \pi_v)_{\#} \eta_n \to_n \xi$ with respect to W_{μ} . Denote \mathbf{Tan}_{μ}^{0} the set of such ξ .

Examples

Definition – **Centred tangent measure fields** $\xi \in \mathscr{P}_2(T\Omega)^0_u$ is tangent if there exists optimal plans $(\eta_n)_n$ with first marginal μ , and $(h_n)_n \subset [1,\infty)$, such that $(\pi_x + h_n \pi_v)_{\#} \eta_n \to_n \xi$ with respect to W_{μ} . Denote \mathbf{Tan}_{μ}^{0} the set of such ξ .

Ex. 1. If $\mu = \delta_0$, any plan is optimal, so that $\mathbf{Tan}_{\mu}^0 = \mathscr{P}_2(T\Omega)_{\mu}^0$.

Examples

Definition – **Centred tangent measure fields** $\xi \in \mathscr{P}_2(T\Omega)^0_u$ is tangent if there exists optimal plans $(\eta_n)_n$ with first marginal μ , and $(h_n)_n \subset [1,\infty)$, such that $(\pi_x + h_n \pi_n)_{\sharp} \eta_n \to_n \xi$ with respect to W_{μ} . Denote \mathbf{Tan}_{μ}^{0} the set of such ξ .

- **Ex. 1.** If $\mu = \delta_0$, any plan is optimal, so that $\operatorname{Tan}_{\mu}^0 = \mathscr{P}_2(T\Omega)_{\mu}^0$.
- **Ex. 2.** If $\mu \ll \mathcal{L}$, any optimal plan is a map, so $\mathbf{Tan}_{\mu}^{0} = \{0_{\mu}\}.$

Examples

Definition – **Centred tangent measure fields** $\xi \in \mathscr{P}_2(T\Omega)^0_u$ is tangent if there exists optimal plans $(\eta_n)_n$ with first marginal μ , and $(h_n)_n \subset [1,\infty)$, such that $(\pi_x + h_n \pi_n)_{\sharp} \eta_n \to_n \xi$ with respect to W_{μ} . Denote \mathbf{Tan}_{μ}^{0} the set of such ξ .

- **Ex. 1.** If $\mu = \delta_0$, any plan is optimal, so that $\operatorname{Tan}_{\mu}^0 = \mathscr{P}_2(T\Omega)_{\mu}^0$.
- **Ex. 2.** If $\mu \ll \mathcal{L}$, any optimal plan is a map, so $\mathbf{Tan}_{\mu}^{0} = \{0_{\mu}\}.$
- **Ex. 3.** If $\mu = (id, 0)_{\#}\mathcal{L}_{[0,1]}$ in dimension 2, then $\xi \in \mathbf{Tan}_{\mu}^{0}$ iff ξ is centred and $v \perp e_1$ for ξ -a.e. (x, v).

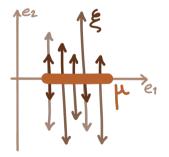


Table of Contents

Introduction

Previous literature on this problem

Result

6 / 12

Theorem 1.1 of [Lot16]¹ If

- \mathcal{M} is a smooth submanifold of dimension k,
- $\mu \ll \mathcal{H}^k \sqcup \mathcal{M}$, with \mathcal{H}^k the Hausdorff measure,

Averil Aussedat Decomposition of a measure December 11, 2025

¹J. Lott, "On tangent cones in Wasserstein space" (2016).

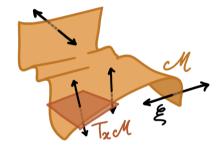
6 / 12

(Extract of) Lott's result

Theorem 1.1 of $[Lot16]^1$

- \mathcal{M} is a smooth submanifold of dimension k.
- $\mu \ll \mathcal{H}^k \sqcup \mathcal{M}$, with \mathcal{H}^k the Hausdorff measure, then $\xi \in \mathbf{Tan}_{\mu}^{0}$ if and only if (ξ is centred and)

 $v \perp T_x \mathcal{M}$ ξ – almost everywhere.



Introduction

Averil Aussedat Decomposition of a measure December 11, 2025

¹J. Lott, "On tangent cones in Wasserstein space" (2016).

Definition A set $A \subset \mathbb{R}^d$ is DC_k (Difference of Convex of dim k) if up to permuting the axes,

$$A = \left\{ (x_1, \cdots, x_k, \Phi(x_1, \cdots, x_k)) \; \middle| \; \Phi : \mathbb{R}^k \to \mathbb{R}^{d-k}, \text{ with each } \Phi_i = \mathsf{convex} - \mathsf{convex} \right\}.$$

Definition A set $A \subset \mathbb{R}^d$ is DC_k (Difference of Convex of dim k) if up to permuting the axes,

$$A = \left\{ (x_1, \cdots, x_k, \Phi(x_1, \cdots, x_k)) \ \middle| \ \Phi : \mathbb{R}^k \to \mathbb{R}^{d-k}, \text{ with each } \Phi_i = \mathsf{convex} - \mathsf{convex} \right\}.$$

A set A is σ -DC_k if is can be covered by countably many DC_k sets.

Definition A set $A \subset \mathbb{R}^d$ is DC_k (Difference of Convex of dim k) if up to permuting the axes,

$$A = \left\{ (x_1, \cdots, x_k, \Phi(x_1, \cdots, x_k)) \ \middle| \ \Phi : \mathbb{R}^k \to \mathbb{R}^{d-k}, \text{ with each } \Phi_i = \mathsf{convex} - \mathsf{convex} \right\}.$$

A set A is $\sigma - DC_k$ if is can be covered by countably many DC_k sets.

Given $\varphi: \mathbb{R}^d \to \mathbb{R}$ convex, let $J_k(\varphi) := \{x \in \mathbb{R}^d \mid \dim \partial_x \varphi \geqslant d - k\}.$

Definition A set $A \subset \mathbb{R}^d$ is DC_k (Difference of Convex of dim k) if up to permuting the axes,

$$A = \left\{ (x_1, \cdots, x_k, \Phi(x_1, \cdots, x_k)) \ \middle| \ \Phi : \mathbb{R}^k \to \mathbb{R}^{d-k}, \text{ with each } \Phi_i = \mathsf{convex} - \mathsf{convex} \right\}.$$

A set A is $\sigma-DC_k$ if is can be covered by countably many DC_k sets.

Given
$$\varphi: \mathbb{R}^d \to \mathbb{R}$$
 convex, let $J_k(\varphi) := \{x \in \mathbb{R}^d \mid \dim \partial_x \varphi \geqslant d - k\}.$

Theorem 1 of [Zaj79]¹ If $\varphi : \mathbb{R}^d \to \mathbb{R}$ is convex, then each $J_k(\varphi)$ is $\sigma - \mathsf{DC_k}$. Conversely, if $A \subset \mathbb{R}^d$ is $\sigma - \mathsf{DC_k}$, there exists a convex $\varphi : \mathbb{R}^d \to \mathbb{R}$ such that $A \subset J_k(\varphi)$.

See also G. Alberti, "On the structure of singular sets of convex functions" (1994).

¹L. Zajíček, "On the differentiation of convex functions in finite and infinite dimensional spaces" (1979).

Theorem – Brenier¹-McCann²[-Gigli³] Let $\mu \in \mathscr{P}_2(\Omega)$.

¹Y. Brenier, "Polar factorization and monotone rearrangement of vector-valued functions" (1991).

²R. McCann, "Polar factorization of maps on Riemannian manifolds" (2001).

³N. Gigli, "On the inverse implication of Brenier-McCann theorems and the structure of $(P_2(M), W_2)$ " (2011).

Theorem – Brenier¹-McCann²[-Gigli³] Let $\mu \in \mathscr{P}_2(\Omega)$. It is equivalent that

• any optimal plan from μ to another measure is induced by a map (which implies uniqueness);

Averil Aussedat

¹Y. Brenier, "Polar factorization and monotone rearrangement of vector-valued functions" (1991).

²R. McCann, "Polar factorization of maps on Riemannian manifolds" (2001).

³N. Gigli, "On the inverse implication of Brenier-McCann theorems and the structure of $(P_2(M), W_2)$ " (2011).

Theorem – Brenier¹-McCann²[-Gigli³] Let $\mu \in \mathscr{P}_2(\Omega)$. It is equivalent that

- any optimal plan from μ to another measure is induced by a map (which implies uniqueness);
- $\mu(A) = 0$ for any DC_{d-1} set A.

Averil Aussedat

¹Y. Brenier, "Polar factorization and monotone rearrangement of vector-valued functions" (1991).

²R. McCann. "Polar factorization of maps on Riemannian manifolds" (2001).

³N. Gigli, "On the inverse implication of Brenier-McCann theorems and the structure of $(P_2(M), W_2)$ " (2011).

Theorem – Brenier¹-McCann²[-Gigli³] Let $\mu \in \mathscr{P}_2(\Omega)$. It is equivalent that

- any optimal plan from μ to another measure is induced by a map (which implies uniqueness);
- $\mu(A) = 0$ for any DC_{d-1} set A.

With the previous notations,

$$\operatorname{Tan}_{\mu}^0 = \{0_{\mu}\} \qquad \Longleftrightarrow \qquad \mu(A) = 0 \ \text{ for any DC}_{d-1} \ \text{set } A.$$

Averil Aussedat

¹Y. Brenier, "Polar factorization and monotone rearrangement of vector-valued functions" (1991).

²R. McCann. "Polar factorization of maps on Riemannian manifolds" (2001).

³N. Gigli, "On the inverse implication of Brenier-McCann theorems and the structure of $(P_2(M), W_2)$ " (2011).

Table of Contents

Introduction

Previous literature on this problem

Result

9/12

Closed convex cone of centred fields

Theorem [Aus25]¹ Let $A \subset \mathscr{P}_2(T\Omega)^0_\mu$ be a W_μ -closed nonnegative cone, which is convex along interpolation through any plans $\eta_x \in \Gamma(\xi_x, \zeta_x)$.

¹A. Aussedat, Local structure of centred tangent cones in the Wasserstein space (2025). [ArXiv preprint]

Closed convex cone of centred fields

Theorem [Aus25]¹ Let $A \subset \mathscr{P}_2(T\Omega)^0_\mu$ be a W_μ -closed nonnegative cone, which is convex along interpolation through any plans $\eta_x \in \Gamma(\xi_x, \zeta_x)$. Then there exists a measurable application D such that D(x) is a vector space, and

$$\xi \in A \qquad \Longleftrightarrow \qquad [\xi \text{ is centred and } v \in D(x) \text{ for } \xi - \text{almost any } (x,v).]$$

¹A. Aussedat, Local structure of centred tangent cones in the Wasserstein space (2025). [ArXiv preprint]

Closed convex cone of centred fields

Theorem [Aus25]¹ Let $A \subset \mathscr{P}_2(T\Omega)^0_\mu$ be a W_μ -closed nonnegative cone, which is convex along interpolation through any plans $\eta_x \in \Gamma(\xi_x, \zeta_x)$. Then there exists a measurable application D such that D(x) is a vector space, and

$$\xi \in A \qquad \Longleftrightarrow \qquad [\xi \text{ is centred and } v \in D(x) \text{ for } \xi - \text{almost any } (x,v).]$$

Proves convexity as measures.

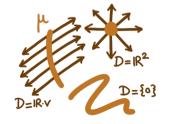
¹A. Aussedat, Local structure of centred tangent cones in the Wasserstein space (2025). [ArXiv preprint]

Averil Aussedat Decomposition of a measure December 11, 2025

Closed convex cone of centred fields

Theorem [Aus25]¹ Let $A \subset \mathscr{P}_2(T\Omega)^0_\mu$ be a W_μ -closed nonnegative cone, which is convex along interpolation through any plans $\eta_x \in \Gamma(\xi_x, \zeta_x)$. Then there exists a measurable application D such that D(x) is a vector space, and

$$\xi \in A \qquad \Longleftrightarrow \qquad [\xi \text{ is centred and } v \in D(x) \text{ for } \xi - \text{almost any } (x,v).]$$



- Proves convexity as measures.
- By [Gig08], \mathbf{Tan}_{μ}^{0} is a closed convex cone of centred fields.

¹A. Aussedat, Local structure of centred tangent cones in the Wasserstein space (2025). [ArXiv preprint]

Averil Aussedat Decomposition of a measure December 11, 2025

Theorem Let $\mu \in \mathscr{P}_2(\Omega)$.

Theorem Let $\mu \in \mathscr{P}_2(\Omega)$. There exists a unique decomposition $\mu = \sum_{k=0}^d \mu_k$ in mutually singular measures such that

Let $\mu \in \mathscr{P}_2(\Omega)$. There exists a unique decomposition $\mu = \sum_{k=0}^d \mu_k$ in mutually singular measures such that

• μ_k is concentrated on a σ -DC_k set A_k , and gives 0 mass to DC_i sets for j < k;

Theorem Let $\mu \in \mathscr{P}_2(\Omega)$. There exists a unique decomposition $\mu = \sum_{k=0}^d \mu_k$ in mutually singular measures such that

- μ_k is concentrated on a σ -DC_k set A_k , and gives 0 mass to DC_j sets for j < k;
- the application D characterizing \mathbf{Tan}_{μ}^{0} is given by $D(x)=(\mathrm{T}_{x}\,A_{k})^{\perp}$ for $\mu_{k}-\mathrm{a.e.}\ x\in\Omega.$

Decomposition along the direction of splitting

Theorem Let $\mu \in \mathscr{P}_2(\Omega)$. There exists a unique decomposition $\mu = \sum_{k=0}^d \mu_k$ in mutually singular measures such that

- μ_k is concentrated on a σ -DC_k set A_k , and gives 0 mass to DC_j sets for j < k;
- the application D characterizing \mathbf{Tan}_{μ}^{0} is given by $D(x) = (T_{x} A_{k})^{\perp}$ for μ_{k} —a.e. $x \in \Omega$.

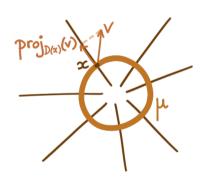
Explicitly, $\xi \in \mathbf{Tan}_{\mu}^{0}$ if and only if ξ is (centred and) concentrated on the normal spaces to each A_{k} .

Averil Aussedat Decomposition of a measure December 11, 2025

Introduction

Small application: projection on \mathbf{Tan}_{n}^{0}

For each x, denote $\operatorname{proj}_{D(x)}:\mathbb{R}^d\to\mathbb{R}^d$ the projection over D(x).



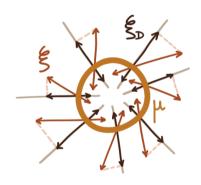
Small application: projection on \mathbf{Tan}_{μ}^{0}

For each x, denote $\operatorname{proj}_{D(x)}: \mathbb{R}^d \to \mathbb{R}^d$ the projection over D(x).

For any $\xi \in \mathscr{P}_2(T\Omega)^0_\mu$, the measure field Corollary

$$\xi_D \coloneqq (\pi_x, \operatorname{proj}_{D(x)}(\pi_v))_{\sharp} \xi$$

is the unique minimizer of $W_{\mu}(\zeta,\xi)$ over $\zeta \in \mathbf{Tan}_{\mu}^{0}$.



Introduction

Directions and open questions

• Ongoing work (and part of the motivation); edge cases where the tangent cone does not behave as expected.

Directions and open questions

• Ongoing work (and part of the motivation); edge cases where the tangent cone does not behave as expected.

Open questions

• What can be said about the projection on \mathbf{Tan}_{μ} for fields that are induced by a map?

Directions and open questions

• Ongoing work (and part of the motivation); edge cases where the tangent cone does not behave as expected.

Open questions

- What can be said about the projection on ${\bf Tan}_{\mu}$ for fields that are induced by a map?
- Is there any link to do with the "functional" tangent cone of Bouchitté-Champion-Jimenez?

Directions and open questions

• Ongoing work (and part of the motivation); edge cases where the tangent cone does not behave as expected.

Open questions

- What can be said about the projection on \mathbf{Tan}_{μ} for fields that are induced by a map?
- Is there any link to do with the "functional" tangent cone of Bouchitté-Champion-Jimenez?

