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Strategies for first-order differentiation in the space of measures
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Let 225(R%) be the space of (nonnegative Borel) probability measures on the space R with

/ y |2|* dp(z) < oo.
re
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Aim  For certain u : Z5(R%) — R, give a meaning to d,u(u).
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Let 225(R%) be the space of (nonnegative Borel) probability measures on the space R with

/ y |2|* dp(z) < oo.
re

Aim  For certain u : Z5(R%) — R, give a meaning to d,u(u).

For instance, we would like that the equation
Opu(t, p) + (Ouult, p),b) =0, (0, 1) = uo(p)

admits as solution w(t, 1) = ug ((id — tb)#wu).
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Let 225(R%) be the space of (nonnegative Borel) probability measures on the space R with

/ y |2|* dp(z) < oo.
re

[ Aim  For certain u : Z5(R%) — R, give a meaning to d,u(u). ]

For instance, we would like that the equation
Opu(t, p) + (Ouult, p),b) =0, (0, 1) = uo(p)

admits as solution w(t, 1) = ug ((id — tb)#wu).

[ This talk will review the definitions of the literature, going from smoothest to most general. ]
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Distributions
[o] lele}

Some definitions

Let D :=C} (R%,R). For each initial measure p, denote (157) ;=0 the unique solution of the
continuity equation

Ospis + div (Vppus) =0, o = p.
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Some definitions

Let D :=C} (R%,R). For each initial measure p, denote (157) ;=0 the unique solution of the
continuity equation

Ospis + div (Vppus) =0, o = p.

Def 1 — Distributional derivative A map u : Z(R?) — R admit a distributional

derivative if there exist a distribution grad,u € D’ such that for all p € D,

1 D) — ()
liam S5 (grad, u(10). ). -
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Distributions
[o] lele}

Some definitions

Let D :=C} (R%,R). For each initial measure p, denote (157) ;=0 the unique solution of the
continuity equation

Osprs + div (Vpus) =0,  po = p.
Def 1 — Distributional derivative A map u : Z(R?) — R admit a distributional
derivative if there exist a distribution grad,u € D’ such that for all p € D,
H,p _
L u(?) — u(p)

liam S5 (grad, u(10). ). -

E This definition is used in [FK09, FN12] to adress Hamilton-Jacobi equations.
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Distributions
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Example: the linear map

Consider the map u : = [ _pa £(z)dp(z).
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Example: the linear map

Consider the map w : pu — [, pa £(x)dp(x). If £is Lipschitz and C', then w is Lipschitz from
P5(RY) to R, and

i W) —uu) . u((id + sVp)#u) — ulp)
sN\0 S s\0 s
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Example: the linear map

Consider the map w : pu — [, pa £(x)dp(x). If £is Lipschitz and C', then w is Lipschitz from
P5(RY) to R, and

w,p _
i W) —ulp)
sN\0 S s\0

u((id + sVp)#u) —ulp) _ Uz +5Vp(a)) — Uz) | (2)
S sN\O J eRd S a
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Example: the linear map

Consider the map w : pu — [, pa £(x)dp(x). If £is Lipschitz and C', then w is Lipschitz from
P5(RY) to R, and

w,p _
i W) —ulp)
sN\0 S s\0

u((id + sVp)#u) —ulp) _ Uz +5Vp(a)) — Uz) | (2)
S sN\O J eRd S a

_ / o V@), V() dp()
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Example: the linear map

Consider the map w : pu — [, pa £(x)dp(x). If £is Lipschitz and C', then w is Lipschitz from
P5(RY) to R, and

w,p _
i W) —ulp)
sN\0 S s\0

u((id + sVp)#p) —ulp) _ Ha + sVp(x) = Ux) ) oy
S N0 Jgeprd s

= [ (V). pla) dute) = (v (u70).2).

so that the distributional derivative of u is the distribution grad ,u(u) = —div (uV¢).
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Example: the linear map

Consider the map w : pu — [, pa £(x)dp(x). If £is Lipschitz and C', then w is Lipschitz from
P5(RY) to R, and

lim u(ps?) —ulp) _ i WG+ sVP)H) —ulp)

Uz + 59p(x)) — 4(2)
s\0 S s\0 S s\0

z€R4 S

= [ (V). pla) dute) = (v (u70).2).

dp(x)

so that the distributional derivative of u is the distribution grad ,u(u) = —div (uV¢).

Remark 1 — Meaning of the divergence Here div (u-) is a notation for the adjoint operator

of the gradient, i.e. (div(uF'),p) = (F,Vp), = Jyera (F(x), Vp(x)) du(z). In particular, if 1
is the Lebesgue measure, it contains the boundary terms.
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The Otto calculus

The work of Otto [JKO98, Ott01] contributed to raise the interest in this family
E of derivatives. The "formal Otto calculus" allows to recast canonical equations as
gradient flows in the Wasserstein space, as summarized in [Vil09].
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The Otto calculus

The work of Otto [JKO98, Ott01] contributed to raise the interest in this family
E of derivatives. The "formal Otto calculus" allows to recast canonical equations as
gradient flows in the Wasserstein space, as summarized in [Vil09].

Consider the map u(u) = [, pa U (p(2)) dx, where y = pdx. Denote yiy = p(t,z)v the
solution of Oy + div (uVp) = 0.
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The Otto calculus

The work of Otto [JKO98, Ott01] contributed to raise the interest in this family
E of derivatives. The "formal Otto calculus" allows to recast canonical equations as
gradient flows in the Wasserstein space, as summarized in [Vil09].

Consider the map u(u) = [, pa U (p(2)) dx, where y = pdx. Denote yiy = p(t,z)v the
solution of d,u + div(uVp) = 0. Then, at least formally,

d
— = U’ O¢pod
dt|t:ou(’ut) /xele (p0)0spoda
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The Otto calculus

The work of Otto [JKO98, Ott01] contributed to raise the interest in this family
E of derivatives. The "formal Otto calculus" allows to recast canonical equations as
gradient flows in the Wasserstein space, as summarized in [Vil09].

Consider the map u(u) = [, pa U (p(2)) dx, where y = pdx. Denote yiy = p(t,z)v the
solution of d,u + div(uVp) = 0. Then, at least formally,

d .
prRAC) —/ U’(po)atpod:c—/ U'(po) (—div (poVp)) da
[t=0 x€R4 z€R4
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The Otto calculus

The work of Otto [JKO98, Ott01] contributed to raise the interest in this family
E of derivatives. The "formal Otto calculus" allows to recast canonical equations as
gradient flows in the Wasserstein space, as summarized in [Vil09].

Consider the map u(u) = [, pa U (p(2)) dx, where y = pdx. Denote yiy = p(t,z)v the

solution of d,u + div(uVp) = 0. Then, at least formally,

d .
prRAC) —/ U’(po)atpod:c—/ U'(po) (—div (poVp)) da
[t=0 x€R4 z€R4

:/ y {poV[U" 0 pol, Vp) dz
TE
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The Otto calculus

The work of Otto [JKO98, Ott01] contributed to raise the interest in this family
E of derivatives. The "formal Otto calculus" allows to recast canonical equations as
gradient flows in the Wasserstein space, as summarized in [Vil09].

Consider the map u(u) = [, pa U (p(2)) dx, where y = pdx. Denote yiy = p(t,z)v the

solution of d,u + div(uVp) = 0. Then, at least formally,

d .
prRAC) —/ U’(po)atpod:c—/ U'(po) (—div (poVp)) da
[t=0 x€R4 z€R4

- / {poV[U" 0 pol,Vp)dx = / —div (poV[U' © po]) p(z)da.
zeR? zeR?
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The Otto calculus

The work of Otto [JKO98, Ott01] contributed to raise the interest in this family
E of derivatives. The "formal Otto calculus" allows to recast canonical equations as
gradient flows in the Wasserstein space, as summarized in [Vil09].

Consider the map u(u) = [, pa U (p(2)) dx, where y = pdx. Denote yiy = p(t,z)v the

solution of d,u + div(uVp) = 0. Then, at least formally,

d .
prRAC) —/ U’(po)atpodx—/ U'(po) (—div (poVp)) da
[t=0 x€R4 z€R4

- / {poV[U" 0 pol,Vp)dx = / —div (poV[U' © po]) p(z)da.
zeR? zeR?

Hence grad ,u = —div (pV[U' o p]). For instance, U(r) = r1n(r) gives grad ,u = —Ap(x).
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The lift

History in two parts: the original extrinsic lifted formulation, and the (quite new) intrinsic one.
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The lift

History in two parts: the original extrinsic lifted formulation, and the (quite new) intrinsic one.

Fundamental theorem of simulation (name from [BL94], [CD18a, Lemma 5.29])
Let (©2,.A,P) be an atomless probability space, and u € %, (Rd). Then there exist
XelL? (Q,A,P;Rd) such that

the law of X is p, ie.  p=X#P, ie  pA)=PX 1(4) VAc A
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The lift

History in two parts: the original extrinsic lifted formulation, and the (quite new) intrinsic one.

Fundamental theorem of simulation (name from [BL94], [CD18a, Lemma 5.29])
Let (©2,.A,P) be an atomless probability space, and u € %, (Rd). Then there exist
XelL? (Q,A,P;Rd) such that

the law of X is p, ie.  p=X#P, ie  pA)=PX 1(4) VAc A

Def 2 — Lift Let u: Z5(R?%) — R. Its liftis a map U : L* (2, A,P;R?) — R given by

U(X) = w(L(X)) = u(X#P).
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Lift
(o] le}

Gradient using the Hilbert structure

Def 3 — L-derivative Assume that U is F-differentiable in L* (Q, A4, P;R?). Then for
all € P(R?), there exist an element &, € L2 (R%R?) such that

VX € L2 (Q,A,P;Rd> st. L(X)=p, VUX)w)=E(X(w) Ywe Q.

We then denote dju(u) = &,. (Here, 8,u(u) is a function in L2 (R%R?).)
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Distributions erentials

Gradient using the Hilbert structure

Def 3 — L-derivative Assume that U is F-differentiable in L* (Q, A4, P;R?). Then for
all € P(R?), there exist an element &, € L2 (R%R?) such that

VX € L2 (Q,A,P;Rd> st. L(X)=p, VUX)w)=E(X(w) Ywe Q.

We then denote dju(u) = &,. (Here, 8,u(u) is a function in L2 (R%R?).)

Idea launched by P.L. Lions in [Lio06], transcripted in [Carl3]. Very popular notion,

E used (in particular) in [CCD15, PW17, PW18, BY19, CGK'22, CGKT22, MZ22] to
make the link between SDEs and PDEs, with focus on the master equation. Higher
order derivatives are also defined (see [Sal23] for arbitrary order).
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Example

Consider again u(y) == [, cga £(x)dp(z). Then its lift U is defined as

U(X) = / X (@) P@).
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Example

Consider again u(y) == [, cga £(x)dp(z). Then its lift U is defined as

U(X) = / X (@) P@).

If £ € C! and Lipschitz, then

lim UX+hY)-U(X)
r\0 h

_ /EQ (VX (), Y (@) dB(w) = (VLo X,Y) s
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Example

Consider again u(y) == [, cga £(x)dp(z). Then its lift U is defined as

U(X) = / X (@) P@).

If £ € C! and Lipschitz, then

 UX+hY)-UX) B
}111{‘% - = /weﬂ (VUX (w)),Y (w)) dP(w) = (Vlo X, Y>L]12» .

Hence DU(X) = V{o X, and ,u(u) = V£ : R? — R? (here independant of 1).
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Example

Consider again u(y) == [, cga £(x)dp(z). Then its lift U is defined as

U(X) = / (X () dP(w).
weN
If £ € C! and Lipschitz, then

 UX+hY)-UX) B
}111{‘% - = /weﬂ (VUX (w)),Y (w)) dP(w) = (Vlo X, Y>L]12» .

Hence DU(X) = V{o X, and ,u(u) = V£ : R? — R? (here independant of 1).

Remark 2 — Insatisfaction This "delocalization" procedure does not seem really natural.
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The linear derivative

Def 4 — Linear derivative A map u : #5(R%) — R is said to admit a linear (functional)
derivative if there exist a function (u, z) — g—Z(,u,x) satisfying

o for all v € Py(RY), limg o Uetslvmmloul) ¢ S, m)d [v — p] (@),

S
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Lift
[ Jelele]e]

The linear derivative

Def 4 — Linear derivative A map u : #5(R%) — R is said to admit a linear (functional)
derivative if there exist a function (u, z) — g—Z(,u,x) satisfying

o for all v € Py(RY), limg o Uetslvmmloul) ¢ S, m)d [v — p] (@),

S

e the normalizing convention [ _p4 g—z(,u,:c)d,u(x) =0.
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The linear derivative

Def 4 — Linear derivative A map u : #5(R%) — R is said to admit a linear (functional)
derivative if there exist a function (u, z) — g—Z(,u,,x) satisfying

o for all v € Py(RY), limg o Uetslvmmloul) ¢ S, m)d [v — p] (@),

S

e the normalizing convention [ _p4 g—:j(ﬂ,:c)du(x) =0.

This formulation goes back to Fleming-Viot processes [FV79], and is used outside of

E the Wasserstein context (see [CLS18] for references). It corresponds to the Fréchet
derivative in the Banach space (M, |-|;y), restricted to &25(IR%). Used in viscosity
[BIRS19] and for the master equation [CD18a, CDLL19].
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Lift
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Example and chain rule

Let u(p) = [, cga £(x)dp(z). Then one simply has

ulp + s(v — w) —ulp) _ / @l = pl(@),

S
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Lift
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Example and chain rule

Let u(p) = [, cga £(x)dp(z). Then one simply has

ulp + s(v — w) —ulp) _ / @l = pl(@),

S

so that g—Z(u,x) = {(x) — (¢, u) (for the normalization).
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Lift
o] Jelele]

Example and chain rule

Let u(p) = [, cga £(x)dp(z). Then one simply has

ulp + s(v — w) —ulp) _ / @l = pl(@),

S

so that g—Z(u,x) = {(x) — (¢, u) (for the normalization).

Chain rule 1 If (z,pu) — g—Z(,u,x) is Lipschitz in 225(R%) x R? and the curve
(1t)iefor] € P2(RY) is Lipschitz in time, then

T u
ulir) = (o) = [ (52 ), Do, (CR-6/61)

Auveril Prost The D in PDE
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The (natural) derivative

Def 5 — Natural derivative Assume that u : &5(R%) — R admits a linear derivative
that is jointly continuous, and such that for all fixed 1 € P, (R%), the map 2 — g—;j(u,:r)

is differentiable in R%. Then one defines the natural derivative of v as

5
Dyu: ZRY xRE 5 RY Dy, ) = Vxﬁ(,u,x).
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The (natural) derivative

Def 5 — Natural derivative Assume that u : &5(R%) — R admits a linear derivative
that is jointly continuous, and such that for all fixed 1 € P, (R%), the map 2 — g—;j(u,:r)

is differentiable in R%. Then one defines the natural derivative of v as

5
Dyu: ZRY xRE 5 RY Dy, ) = Vxﬁ(,u,x).

The notations are taken from [CD18a, CD18b], and this definition is used in [CDLL19].
E The terminology is not clear, and we called D,u "natural derivative" in waiting of a
better name.
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Lift
00080

Example and chain rule

According to Frame 12, the map u(u) = [, _pa £(x)du(z) has a linear derivative
g—Z(u,a}) ={l(x) — (¢, n). Hence we directly have

ou
Dyu(p, x) = Vm@(%x) = V().
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Lift
00080

Example and chain rule

According to Frame 12, the map u(u) = [, _pa £(x)du(z) has a linear derivative
g—Z(u,a}) ={l(x) — (¢, n). Hence we directly have

J
Dyu(p,x) = Vx—u

5 (1, x) = Ve(x).

Chain rule 2 Assume that D,u(u) is jointly continuous, and let the measure curve
(1t)efo,m solve Oypy = —div (g(t, -, pu)##pe). Then, from (CR-§/54), we obtain

uwwumszwgmmwﬁw>w

1243

=0
T

— [ Dt o). glt ) dpa(o)t
t=0 J zeR4

. J

Averil Prost The D in PDE 14 /28
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Link ([CD18a, Prop. 5.48] and [CDLL19, Appx A]) Let u : Z(R%) — R, and
assume that either

e u admits a jointly continuous Lions-differential 0,u in the sense of Def 3 that has
linear growth in = uniformly in p,

e v admits a jointly continuous natural derivative D,,u in the sense of Def 5 that has
linear growth in x uniformly in .

Then the other point stands and

Opu(p, ) = Dyu(p, ) V(i z) € Po(R?) x RY,

Hence the two definitions are gathered under the vocabulary of "Lions differentiability".

Auveril Prost The D in PDE
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Semidifferentials
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The regular case

Define a family of "tangent vectors" to i as

2
T,2(R%) = (Vo | ¢ € CLRGR)} ~.
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Semidifferentials
000

The regular case

Define a family of "tangent vectors" to u as

2
T, 2R = Vo | p € CLRGR)} .

Def 6 — Regular semidifferentials Let u : 25(R?) — R and u € &5(R?). An element
€ € T, P5(R?) is said to belong to the subdifferential of u at p if for all v € P,(R?),

W) —u(l) > sup / V)= ) ) A 0 @l )«
n€lo(p,v) J (@,y)€(R4)2

The set of such & is denoted 0.u(u). The superdifferential writes 0" u(p) == —0.(—u)(p).

Auveril Prost The D in PDE
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The regular case

Define a family of "tangent vectors" to u as

2
T, 2R = Vo | p € CLRGR)} .

Def 6 — Regular semidifferentials Let u : 25(R?) — R and u € &5(R?). An element
€ € T, P5(R?) is said to belong to the subdifferential of u at p if for all v € P,(R?),

W) —u(l) > sup / V)= ) ) A 0 @l )«
n€lo(p,v) J (@,y)€(R4)2

The set of such ¢ is denoted 0.u(u). The superdifferential writes 0 u(u) = —0.(—u)(u).

E This definition inspired the d—semidifferentials of [CQ08, MQ18, JMQ20, JMQ22].

Auveril Prost The D in PDE
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Semidifferentials
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Example

Let u(p) = [, cga £(x)dpu(x), and assume that £ € C' is A\—semiconvex, i.e.

ty) — b(a) > (VE(x),y — ) — 5 ly —af?.
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Semidifferentials
(o] le}

Example

Let u(p) = [, cga £(x)dpu(x), and assume that £ € C' is A\—semiconvex, i.e.
A 2
Uy) = Uz) 2 (Vl(z),y —2) = 5 ly —2[".
Then, for any (i, v) € (P(RY))2, integrating the above against i € T',(u, V) yields

[ i~ [ @iz [ )y - adntey) - Sd)
yERd zER? (z,y)€(RY)?

[\

u(v) u(p)
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Semidifferentials
(o] le}

Example

Let u(p) = [, cga £(x)dpu(x), and assume that £ € C' is A\—semiconvex, i.e.

ty) — b(a) > (VE(x),y — ) — 5 ly —af?.

Then, for any (i, v) € (P(RY))2, integrating the above against i € T',(u, V) yields

- T €T x — X i — i 2 14
= [ @i [,y dnte )~ Gt

[\

u(v) u(p)

Since 7 is arbitrary, we conclude that = — V/{(z) belongs to the subdifferential of u at p.
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Link with the Lions differentiability

Def 7 — W-differential Let u : Z5(R%) — R such that d.u(u) # 0 and 9 u(u) # 0.
Then d.u(p) = 0'u(p) = {£}, and the Wasserstein gradient of w at u is Vj,u(p) = &.
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Semidifferentials
[e]e] ]

Link with the Lions differentiability

Def 7 — W-differential Let u : Z5(R%) — R such that d.u(u) # 0 and 9 u(u) # 0.
Then d.u(p) = 0'u(p) = {£}, and the Wasserstein gradient of w at u is Vj,u(p) = &.

The map u admits a W-gradient V,,u(p) at p if and only if its lift U(X) = u(L(X)) is
differentiable at some X such that £(X) = p. In this case, one has Vj,u(p) = d,u(p).

Averil Prost The D in PDE 19 /28



Semidifferentials
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Link with the Lions differentiability

Def 7 — W-differential Let u : Z5(R%) — R such that d.u(u) # 0 and 9 u(u) # 0.
Then d.u(p) = 0'u(p) = {£}, and the Wasserstein gradient of w at u is Vj,u(p) = &.

The map u admits a W-gradient Vi, u(p) at p if and only if its lift U(X) =
differentiable at some X such that £(X) = p. In this case, one has Vj,u(u)

U( (X)) is
= Ouu(p)-

The geometric approach of Wasserstein gradients originated in [AGS05], followed by
E [GNTO08]. [AG08, GS14] make a direct use of this definition in viscosity solutions. The
above link was shown in [GT19, Corollary 3.22] (see also [CD18a, Theorem 5.64]).
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Semidifferentials

The general tangent cone

Problem: the regular tangent cone does not split mass.

Auveril Prost The D in PDE 20 /28



Semidifferentials

The general tangent cone

Problem: the regular tangent cone does not split mass. Define the general tangent cone as

©w

T, P (RY) = {¢ € P(TRY), | 32 > 0,t — exp,,(t - &) is a geodesic on t € [O,a]}W :
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Semidifferentials

The general tangent cone

Problem: the regular tangent cone does not split mass. Define the general tangent cone as

©w

T, P (RY) = {¢ € P(TRY), | 32 > 0,t — exp,,(t - &) is a geodesic on t € [0,5]}W :

where W,.(&,1) = [, cga dw (&, 12)dp(x) is a generalization of the L? distance on plans,
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Semidifferentials

Generalized semidifferentials

For any ¢ € T, 25(R%) and v € P5(R?), denote I',(¢,v) the set of plans

T, v1 #77 = Ea

neZ (@) ‘ z € R%,v; € T,R? st
({ }> (T Tz + T )#N € To(p,v).
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Semidifferentials

Generalized semidifferentials

For any ¢ € T, 25(R%) and v € P5(R?), denote I',(¢,v) the set of plans

T, v1 #77 =,

ne P (| (x,v1,v9) ‘ WS Rd,vi IS Tde s.t.
<{ }> (T Tz + T )#N € To(p,v).

Def8 Letu: 2(R?Y) — Rand u € P5(RY). A tangent vector £ € T, 75(R?) belongs
to the generalized subdifferential of u at y, denoted 8.u(y), if for all v € Z25(RY),

u(v) —u(p) = sup (v1,v2) dn(x, v1,v2) + o (dw(p,v)),

n€ls(&v) /»’CERdy(vhvz)e(Tsz)z

The generalized superdifferential is defined as 9" u(u) = —8.(—u)(w).
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Semidifferentials

Example

Let u(p) = [, ga £(x)dp(x), and assume that £ is A—semiconvex (but not C' anymore).
Denote 0,¢ the subdifferential of ¢ at x (a set of vectors).
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Let u(p) = [, ga £(x)dp(x), and assume that £ is A—semiconvex (but not C' anymore).
Denote 0,/ the subdifferential of £ at z (a set of vectors). Let £ € P (U, cpa{z} x 0,() be

such that 7,#& = u (€ only gives mass to the subdifferential of £). Then, for any 2 € R¢, any
v1 € 93¢ and any vy € T,RY,
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Let u(p) = [, ga £(x)dp(x), and assume that £ is A—semiconvex (but not C' anymore).
Denote 0,/ the subdifferential of £ at z (a set of vectors). Let £ € P (U, cpa{z} x 0,() be

such that 7,#& = u (€ only gives mass to the subdifferential of £). Then, for any 2 € R¢, any
v1 € 93¢ and any vy € T,RY,

A

2

Uz 4 vy) — l(x) = (v1,v2)
Let (u,v) € (22(R%))2, and n € T,(&,v). Integrating the above against 7,

u(v) — u() > /

A
o o (TR (v1,v2) dn(z,v1,v2) — 56112/\1(#» v).
reR? (v1,v2)E(dy
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Semidifferentials

Example

Let u(p) = [, ga £(x)dp(x), and assume that £ is A—semiconvex (but not C' anymore).
Denote 0,/ the subdifferential of £ at z (a set of vectors). Let £ € P (U, cpa{z} x 0,() be

such that 7,#& = u (€ only gives mass to the subdifferential of £). Then, for any 2 € R¢, any
v1 € 93¢ and any vy € T,RY,

A

Uz +v9) —l(x) = (v1,v2) — 5

o2
Let (u,v) € (22(R%))2, and n € T,(&,v). Integrating the above against 7,

u(v) — u() > /

A
o o (TR (v1,v2) dn(z,v1,v2) — §d12/v(u» v).
reR? (v1,v2)E(dy

Since 7 is arbitrary, we obtain that £ € 8.u(u).
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Metric case
[e] Jele]

Differentiate in length spaces

Def 9 — Metric slope Let (X,d) be a metric space. The metric slope of a map u :
X — R at the point z is given by

|Vu(x)| = yllnm TCRN)
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Differentiate in length spaces

Def 9 — Metric slope Let (X,d) be a metric space. The metric slope of a map u :
X — R at the point z is given by

|Vu(x)| = yllnx TCRN)

Metric slopes are used to formulate equations in (length) metric spaces, for instance in
E [AGS05, Vil0g, Oht09] on gradient flows, of [GNT08, HK15, GS15a, GS15b, GHN15]
on eikonal-type equations.
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Differentiate in length spaces

Def 9 — Metric slope Let (X,d) be a metric space. The metric slope of a map u :
X — R at the point z is given by

|Vu(x)| = yllnx TCRN)

Metric slopes are used to formulate equations in (length) metric spaces, for instance in
E [AGS05, Vil0g, Oht09] on gradient flows, of [GNT08, HK15, GS15a, GS15b, GHN15]
on eikonal-type equations.

(Last) example: let u(p) = [, ga £(x)dp with £ € C7. Then [VHu(p)| = [, ga [VE()| du(z).
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Metric case
[e]e] o]

Gradient flows

In [AGSO05], general gradient flows are studied in metric spaces. They want to give a meaning
to curves satisfying

Y0 =-Ve),  y(0)=y.

!Under the assumptions of [AGS05, Theorem 11.3.2].
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In [AGSO05], general gradient flows are studied in metric spaces. They want to give a meaning
to curves satisfying

%y@ =-Voy),  y(0)=w.

To this aim, a numerical scheme is designed, and an approximating sequence (y")y is
computed. In the case of the Wasserstein space, Ambrosio, Gigli and Savaré showed that!

e the limit 7 exists and satisfies an axiomatic definition of gradient curve,

!Under the assumptions of [AGS05, Theorem 11.3.2].
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Y0 =-Ve),  y(0)=y.
To this aim, a numerical scheme is designed, and an approximating sequence (y")y is
computed. In the case of the Wasserstein space, Ambrosio, Gigli and Savaré showed that!
e the limit 7 exists and satisfies an axiomatic definition of gradient curve,
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Metric case
[e]e] o]

Gradient flows

In [AGSO05], general gradient flows are studied in metric spaces. They want to give a meaning
to curves satisfying

Y0 =-Ve),  y(0)=y.

To this aim, a numerical scheme is designed, and an approximating sequence (y"' )y is
computed. In the case of the Wasserstein space, Ambrosio, Gigli and Savaré showed that!

)

e the limit 7 exists and satisfies an axiomatic definition of gradient curve,

e an appropriate generalization of %@(t) converges to an element of 9.9 (y(t)).

[ The regular tangent space 9.® may be two small (case of ® = d3,(-, o) for instance). ]

!Under the assumptions of [AGS05, Theorem 11.3.2].
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Eikonal-type equations (HJ depending only on the norm of Vu)

Canonical example: a minimal time problem

1
—0pu(t, p) + 3 ‘V+u(t,u)‘2 =1, u(T,p) =
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Eikonal-type equations (HJ depending only on the norm of Vu)

Canonical example: a minimal time problem

1
—Opu(t 1) + 5 IVFult,w)|* =1, w(T,pu) =0

In [AF14], such equations is studied in geodesic/length spaces by first using metric slopes.
They show that

e a definition of viscosity using the generalized semidifferentials is compatible with their
metric definition (a solution for the former is a solution for the latter).
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Metric case
[e]e]e] )

Eikonal-type equations (HJ depending only on the norm of Vu)

Canonical example: a minimal time problem

1
—Opu(t 1) + 5 IVFult,w)|* =1, w(T,pu) =0

In [AF14], such equations is studied in geodesic/length spaces by first using metric slopes.
They show that

e a definition of viscosity using the generalized semidifferentials is compatible with their
metric definition (a solution for the former is a solution for the latter).

e it is no longer the case when restricted to the regular semidifferentials.

The construction of generalized subdifferentials in [AF14] is linked to the tangent

E cone for curved spaces, explored for the Wasserstein case in [Gig08] (see [AKP22] for
material on curved spaces).
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Conclusion
[ le]

The derivatives of the linear map in one glance

Recall that u : 2, (R%) is defined as

z€R4
Distributional Lions Linear Natural Regular General
derivative derivative derivative derivative subdifferential | subdifferential
grad,,u(p) Dyl e (p, ) Dyu(p,-) | du(p), Vou | d.u(p)
L A\ Vi,
div (V) Ve ¢ Ve select® of 0¢ | 2(Gr(00))
jﬁ:lrilfyuf/:/?tn}; element of element of element of element of element of
CL(RY, R) Li(Rd, R%) Li(Rd, R) Li(Rd, RY) 1, % (RY) T, Po(RY)
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Conclusion

e The L-differentiability (lift, intrinsic/extrinsic) is well-adapted to some problems (for
instance the master equation with smooth coefficients), and emerges naturally from the
modelization.

Auveril Prost The D in PDE 28 /28



Conclusion
oe

Conclusion

e The L-differentiability (lift, intrinsic/extrinsic) is well-adapted to some problems (for
instance the master equation with smooth coefficients), and emerges naturally from the
modelization.

e The W-differentiability, constructed in a more geometric fashion, has been reconciled with
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Conclusion

e The L-differentiability (lift, intrinsic/extrinsic) is well-adapted to some problems (for
instance the master equation with smooth coefficients), and emerges naturally from the
modelization.

e The W-differentiability, constructed in a more geometric fashion, has been reconciled with
the L-differentiability since they coincide on sufficiently smooth functions.

e Whenever the map u is not differentiable, generalized subdifferentials (although less
maniable) are more suited than regular ones.

Open questions:
e How to get out of vector spaces?

e |s there an existence theorem to dig for continuity equations written as
O = —div (e F'(pe)), where Flu,] is a plan in TWQQ(Rd)? Can this be posed
pointwise in time, and under which condition does existence hold?
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Thank you!
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