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Distributions Lift Semidifferentials Metric case Conclusion

Let P2(Rd) be the space of (nonnegative Borel) probability measures on the space Rd with∫
x∈Rd

|x|2 dµ(x) < ∞.

Aim For certain u : P2(Rd) → R, give a meaning to ∂µu(µ).

For instance, we would like that the equation

∂tu(t, µ) + ⟨∂µu(t, µ), b⟩ = 0, u(0, µ) = u0(µ)

admits as solution u(t, µ) = u0 ((id− tb)#µ).

This talk will review the definitions of the literature, going from smoothest to most general.
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Some definitions

Let D := C1
c

(
Rd,R

)
. For each initial measure µ, denote (µµ,p

s )s⩾0 the unique solution of the
continuity equation

∂sµs + div (∇p µs) = 0, µ0 = µ.

Def 1 – Distributional derivative A map u : P(Rd) → R admit a distributional
derivative if there exist a distribution gradµu ∈ D′ such that for all p ∈ D,

lim
s↘0

u(µµ,p
s )− u(µ)

s
=

〈
gradµu(µ), p

〉
D′,D .

[ This definition is used in [FK09, FN12] to adress Hamilton-Jacobi equations.
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Example: the linear map

Consider the map u : µ 7→
∫
x∈Rd ℓ(x)dµ(x).

If ℓ is Lipschitz and C1, then u is Lipschitz from
P2(Rd) to R, and

lim
s↘0

u(µµ,p
s )− u(µ)

s
= lim

s↘0

u((id+ s∇p)#µ)− u(µ)

s

= lim
s↘0

∫
x∈Rd

ℓ(x+ s∇p(x))− ℓ(x)

s
dµ(x)

=

∫
x∈Rd

⟨∇ℓ(x),∇p(x)⟩ dµ(x) = −⟨ div (µ∇ℓ) , p⟩ ,

so that the distributional derivative of u is the distribution gradµu(µ) := − div (µ∇ℓ).

Remark 1 – Meaning of the divergence Here div (µ·) is a notation for the adjoint operator
of the gradient, i.e. ⟨ div (µF ), p⟩ := ⟨F,∇p⟩µ =

∫
x∈Rd ⟨F (x),∇p(x)⟩ dµ(x). In particular, if µ

is the Lebesgue measure, it contains the boundary terms.
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The Otto calculus

[
The work of Otto [JKO98, Ott01] contributed to raise the interest in this family
of derivatives. The "formal Otto calculus" allows to recast canonical equations as
gradient flows in the Wasserstein space, as summarized in [Vil09].

Consider the map u(µ) :=
∫
x∈Rd U (ρ(x)) dx, where µ = ρdx. Denote µt = ρ(t, x)ν the

solution of ∂tµ+ div (µ∇p) = 0. Then, at least formally,

d

dt |t=0
u(µt) =

∫
x∈Rd

U ′(ρ0)∂tρ0dx

=

∫
x∈Rd

U ′(ρ0) (− div (ρ0∇p)) dx

=

∫
x∈Rd

〈
ρ0∇[U ′ ◦ ρ0],∇p

〉
dx =

∫
x∈Rd

− div
(
ρ0∇[U ′ ◦ ρ0]

)
p(x)dx.

Hence gradµu = − div (ρ∇[U ′ ◦ ρ]). For instance, U(r) = r ln(r) gives gradµu = −∆ρ(x).
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The lift

History in two parts: the original extrinsic lifted formulation, and the (quite new) intrinsic one.

Fundamental theorem of simulation (name from [BL94], [CD18a, Lemma 5.29])
Let (Ω,A,P) be an atomless probability space, and µ ∈ P2

(
Rd

)
. Then there exist

X ∈ L2
(
Ω,A,P;Rd

)
such that

the law of X is µ, i.e. µ = X#P, i.e. µ(A) = P(X−1(A)) ∀A ∈ A.

Def 2 – Lift Let u : P2(Rd) → R. Its lift is a map U : L2
(
Ω,A,P;Rd

)
→ R given by

U(X) = u(L(X )) = u(X#P).

Averil Prost The D in PDE 8 / 28
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Gradient using the Hilbert structure

Def 3 – L-derivative Assume that U is F-differentiable in L2
(
Ω,A,P;Rd

)
. Then for

all µ ∈ P2(Rd), there exist an element ξµ ∈ L2
µ

(
Rd;Rd

)
such that

∀X ∈ L2
(
Ω,A,P;Rd

)
s.t. L(X) = µ, ∇U(X)(ω) = ξµ(X(ω)) ∀ω ∈ Ω.

We then denote ∂µu(µ) := ξµ. (Here, ∂µu(µ) is a function in L2
µ(Rd;Rd).)

[

Idea launched by P.L. Lions in [Lio06], transcripted in [Car13]. Very popular notion,
used (in particular) in [CCD15, PW17, PW18, BY19, CGK+22, CGK+22, MZ22] to
make the link between SDEs and PDEs, with focus on the master equation. Higher
order derivatives are also defined (see [Sal23] for arbitrary order).

Averil Prost The D in PDE 9 / 28
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Averil Prost The D in PDE 9 / 28



Distributions Lift Semidifferentials Metric case Conclusion

Example

Consider again u(µ) :=
∫
x∈Rd ℓ(x)dµ(x). Then its lift U is defined as

U(X) =

∫
ω∈Ω

ℓ(X(ω))dP(ω).

If ℓ ∈ C1 and Lipschitz, then

lim
h↘0

U(X + hY )− U(X)

h
=

∫
ω∈Ω

⟨∇ℓ(X(ω)), Y (ω)⟩ dP(ω) = ⟨∇ℓ ◦X,Y ⟩L2
P
.

Hence DU(X) = ∇ℓ ◦X, and ∂µu(µ) = ∇ℓ : Rd → Rd (here independant of µ).

Remark 2 – Insatisfaction This "delocalization" procedure does not seem really natural.
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The linear derivative

Def 4 – Linear derivative A map u : P2(Rd) → R is said to admit a linear (functional)
derivative if there exist a function (µ, x) 7→ δu

δµ(µ, x) satisfying

• for all ν ∈ P2(Rd), lims↘0
u(µ+s(ν−µ))−u(µ)

s =
∫
x∈Rd

δu
δµ(µ, x)d [ν − µ] (x),

• the normalizing convention
∫
x∈Rd

δu
δµ(µ, x)dµ(x) = 0.

[

This formulation goes back to Fleming-Viot processes [FV79], and is used outside of
the Wasserstein context (see [CLS18] for references). It corresponds to the Fréchet
derivative in the Banach space (M, |·|TV ), restricted to P2(Rd). Used in viscosity
[BIRS19] and for the master equation [CD18a, CDLL19].
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Example and chain rule

Let u(µ) :=
∫
x∈Rd ℓ(x)dµ(x). Then one simply has

u(µ+ s(ν − µ))− u(µ)

s
=

∫
x∈Rd

ℓ(x)d[ν − µ](x),

so that δu
δµ(µ, x) = ℓ(x)− ⟨ℓ, µ⟩ (for the normalization).

Chain rule 1 If (x, µ) 7→ δu
δµ(µ, x) is Lipschitz in P2(Rd) × Rd and the curve

(µt)t∈[0,T ] ⊂ P2(Rd) is Lipschitz in time, then

u(µT )− u(µ0) =

∫ T

t=0

〈δu
δµ

(µt, ·), ∂tµt

〉
dt. (CR-δ/δµ)
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The (natural) derivative

Def 5 – Natural derivative Assume that u : P2(Rd) → R admits a linear derivative
that is jointly continuous, and such that for all fixed µ ∈ P2(Rd), the map x 7→ δu

δµ(µ, x)

is differentiable in Rd. Then one defines the natural derivative of u as

Dµu : P2(Rd)× Rd → Rd, Dµu(µ, x) = ∇x
δu

δµ
(µ, x).

[
The notations are taken from [CD18a, CD18b], and this definition is used in [CDLL19].
The terminology is not clear, and we called Dµu "natural derivative" in waiting of a
better name.
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Example and chain rule

According to Frame 12, the map u(µ) :=
∫
x∈Rd ℓ(x)dµ(x) has a linear derivative

δu
δµ(µ, x) = ℓ(x)− ⟨ℓ, µ⟩. Hence we directly have

Dµu(µ, x) = ∇x
δu

δµ
(µ, x) = ∇ℓ(x).

Chain rule 2 Assume that Dµu(µ) is jointly continuous, and let the measure curve
(µt)t∈[0,T ] solve ∂tµt = − div (g(t, ·, µt)#µt). Then, from (CR-δ/δµ), we obtain

u(µT )− u(µ0) =

∫ T

t=0

〈
∇x

δu

δµ
(µ, x), g(t, ·, µt)

〉
µt

dt

=

∫ T

t=0

∫
x∈Rd

⟨Dµu(µt, x), g(t, x, µt)⟩ dµt(x)dt.
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Links

Link ([CD18a, Prop. 5.48] and [CDLL19, Appx A]) Let u : P2(Rd) → R, and
assume that either

• u admits a jointly continuous Lions-differential ∂µu in the sense of Def 3 that has
linear growth in x uniformly in µ,

• u admits a jointly continuous natural derivative Dµu in the sense of Def 5 that has
linear growth in x uniformly in µ.

Then the other point stands and

∂µu(µ, x) = Dµu(µ, x) ∀(µ, x) ∈ P2(Rd)× Rd.

Hence the two definitions are gathered under the vocabulary of "Lions differentiability".
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The regular case

Define a family of "tangent vectors" to µ as

TµP2(Rd) := {∇φ | φ ∈ C1
c (Rd;R)}

L2
µ
.

Def 6 – Regular semidifferentials Let u : P2(Rd) → R and µ ∈ P2(Rd). An element
ξ ∈ TµP2(Rd) is said to belong to the subdifferential of u at µ if for all ν ∈ P2(Rd),

u(ν)− u(µ) ⩾ sup
η∈Γo(µ,ν)

∫
(x,y)∈(Rd)2

⟨ξ(x), y − x⟩ dη(x, y) + o (dW(µ, ν)) .

The set of such ξ is denoted ∂·u(µ). The superdifferential writes ∂·u(µ) := −∂·(−u)(µ).

[ This definition inspired the δ−semidifferentials of [CQ08, MQ18, JMQ20, JMQ22].
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Example

Let u(µ) =
∫
x∈Rd ℓ(x)dµ(x), and assume that ℓ ∈ C1 is λ−semiconvex, i.e.

ℓ(y)− ℓ(x) ⩾ ⟨∇ℓ(x), y − x⟩ − λ

2
|y − x|2 .

Then, for any (µ, ν) ∈ (P2(Rd))2, integrating the above against η ∈ Γo(µ, ν) yields∫
y∈Rd

ℓ(y)dν(y)︸ ︷︷ ︸
u(ν)

−
∫
x∈Rd

ℓ(x)dµ(x)︸ ︷︷ ︸
u(µ)

⩾
∫
(x,y)∈(Rd)2

⟨∇ℓ(x), y − x⟩ dη(x, y)− λ

2
d2W(µ, ν).

Since η is arbitrary, we conclude that x 7→ ∇ℓ(x) belongs to the subdifferential of u at µ.
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Link with the Lions differentiability

Def 7 – W-differential Let u : P2(Rd) → R such that ∂·u(µ) ̸= ∅ and ∂·u(µ) ̸= ∅.
Then ∂·u(µ) = ∂·u(µ) = {ξ}, and the Wasserstein gradient of u at µ is ∇Wu(µ) := ξ.

The map u admits a W-gradient ∇Wu(µ) at µ if and only if its lift U(X) := u(L(X)) is
differentiable at some X such that L(X) = µ. In this case, one has ∇Wu(µ) = ∂µu(µ).

[
The geometric approach of Wasserstein gradients originated in [AGS05], followed by
[GNT08]. [AG08, GŚ14] make a direct use of this definition in viscosity solutions. The
above link was shown in [GT19, Corollary 3.22] (see also [CD18a, Theorem 5.64]).
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The general tangent cone

Problem: the regular tangent cone does not split mass.

Define the general tangent cone as

T µP2(Rd) :=
{
ξ ∈ P(TRd)µ

∣∣ ∃ε > 0, t 7→ expµ(t · ξ) is a geodesic on t ∈ [0, ε]
}Wµ

,

where Wµ(ξ, η) :=
∫
x∈Rd dW(ξx, ηx)dµ(x) is a generalization of the L2

µ distance on plans.
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Generalized semidifferentials

For any ξ ∈ T µP2(Rd) and ν ∈ P2(Rd), denote Γo(ξ, ν) the set of plans

η ∈ P
({

(x, v1, v2)
∣∣∣ x ∈ Rd, vi ∈ TxRd

})
s.t.

{
πx,v1#η = ξ,

(πx, πx + πv2)#η ∈ Γo(µ, ν).

Def 8 Let u : P2(Rd) → R and µ ∈ P2(Rd). A tangent vector ξ ∈ T µP2(Rd) belongs
to the generalized subdifferential of u at µ, denoted ∂·u(µ), if for all ν ∈ P2(Rd),

u(ν)− u(µ) ⩾ sup
η∈Γo(ξ,ν)

∫
x∈Rd,(v1,v2)∈(TxRd)2

⟨v1, v2⟩ dη(x, v1, v2) + o (dW(µ, ν)) ,
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Generalized semidifferentials

For any ξ ∈ T µP2(Rd) and ν ∈ P2(Rd), denote Γo(ξ, ν) the set of plans

η ∈ P
({

(x, v1, v2)
∣∣∣ x ∈ Rd, vi ∈ TxRd

})
s.t.

{
πx,v1#η = ξ,

(πx, πx + πv2)#η ∈ Γo(µ, ν).
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Example

Let u(µ) :=
∫
x∈Rd ℓ(x)dµ(x), and assume that ℓ is λ−semiconvex (but not C1 anymore).

Denote ∂xℓ the subdifferential of ℓ at x (a set of vectors).

Let ξ ∈ P
(⋃

x∈Rd{x} × ∂xℓ
)

be
such that πx#ξ = µ (ξ only gives mass to the subdifferential of ℓ). Then, for any x ∈ Rd, any
v1 ∈ ∂xℓ and any v2 ∈ TxRd,

ℓ(x+ v2)− ℓ(x) ⩾ ⟨v1, v2⟩ −
λ

2
|v2|2 .

Let (µ, ν) ∈ (P2(Rd))2, and η ∈ Γo(ξ, ν). Integrating the above against η,

u(ν)− u(µ) ⩾
∫
x∈Rd,(v1,v2)∈(TxRd)2

⟨v1, v2⟩ dη(x, v1, v2)−
λ

2
d2W(µ, ν).

Since η is arbitrary, we obtain that ξ ∈ ∂·u(µ).
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Differentiate in length spaces

Def 9 – Metric slope Let (X, d) be a metric space. The metric slope of a map u :
X → R at the point x is given by

|∇u(x)| := lim
y→x

|u(y)− u(x)|
d(x, y)

.

[
Metric slopes are used to formulate equations in (length) metric spaces, for instance in
[AGS05, Vil09, Oht09] on gradient flows, of [GNT08, HK15, GŚ15a, GŚ15b, GHN15]
on eikonal-type equations.

(Last) example: let u(µ) =
∫
x∈Rd ℓ(x)dµ with ℓ ∈ C2

b . Then |∇+u(µ)| =
∫
x∈Rd |∇ℓ(x)| dµ(x).
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Gradient flows

In [AGS05], general gradient flows are studied in metric spaces. They want to give a meaning
to curves satisfying

d

dt
y(t) = −∇Φ(y(t)), y(0) = y0.

To this aim, a numerical scheme is designed, and an approximating sequence (yN )N is
computed. In the case of the Wasserstein space, Ambrosio, Gigli and Savaré showed that1

• the limit y exists and satisfies an axiomatic definition of gradient curve,

• an appropriate generalization of d
dty(t) converges to an element of ∂·Φ(y(t)).

The regular tangent space ∂·Φ may be two small (case of Φ = d2W(·, σ) for instance).

1Under the assumptions of [AGS05, Theorem 11.3.2].
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Eikonal-type equations (HJ depending only on the norm of ∇u)

Canonical example: a minimal time problem

−∂tu(t, µ) +
1

2

∣∣∇+u(t, µ)
∣∣2 = 1, u(T, µ) = 0.

In [AF14], such equations is studied in geodesic/length spaces by first using metric slopes.
They show that

• a definition of viscosity using the generalized semidifferentials is compatible with their
metric definition (a solution for the former is a solution for the latter).

• it is no longer the case when restricted to the regular semidifferentials.

[
The construction of generalized subdifferentials in [AF14] is linked to the tangent
cone for curved spaces, explored for the Wasserstein case in [Gig08] (see [AKP22] for
material on curved spaces).
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The derivatives of the linear map in one glance

Recall that u : P2(Rd) is defined as

u(µ) :=

∫
x∈Rd

ℓ(x)dµ(x).

Distributional
derivative

Lions
derivative

Linear
derivative

Natural
derivative

Regular
subdifferential

General
subdifferential

gradµu(µ) ∂µu(µ)
δu
δµ(µ, ·) Dµu(µ, ·) ∂·u(µ), ∇Wu ∂·u(µ)

− div (µ∇ℓ) ∇ℓ ℓ ∇ℓ
∇ℓ,

select° of ∂ℓ
∇ℓ#µ,

P(Gr(∂ℓ))

distribution,
duality with
C1
c (Rd,R)

element of
L2
µ(Rd,Rd)

element of
L2
µ(Rd,R)

element of
L2
µ(Rd,Rd)

element of
TµP2(Rd)

element of
T µP2(Rd)
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Conclusion

• The L-differentiability (lift, intrinsic/extrinsic) is well-adapted to some problems (for
instance the master equation with smooth coefficients), and emerges naturally from the
modelization.

• The W-differentiability, constructed in a more geometric fashion, has been reconciled with
the L-differentiability since they coincide on sufficiently smooth functions.

• Whenever the map u is not differentiable, generalized subdifferentials (although less
maniable) are more suited than regular ones.

Open questions:
• How to get out of vector spaces?
• Is there an existence theorem to dig for continuity equations written as
∂tµt = − div (µtF (µt)), where F [µt] is a plan in T µP2(Rd)? Can this be posed
pointwise in time, and under which condition does existence hold?
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Thank you!
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