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Monge-Ampere

Let © ¢ R? be a given domain.

Def The Monge-Ampére (MA) equation looks for a convex function u : 2 — R satisfying

2 _ [
(MA) det (VZu(z)) = JVul))’

Here V2u(z) is the Hessian matrix of u, and f, g are given.

and boundary conditions.
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Let © ¢ R? be a given domain.

Def The Monge-Ampére (MA) equation looks for a convex function u : 2 — R satisfying

2 _ [
(MA) det (VZu(z)) = JVul))’

Here V2u(z) is the Hessian matrix of u, and f, g are given.

and boundary conditions.

In general, the right hand-side can be written f(z,u(z), Vu(x)), but let us stick to (MA).
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In which you realise that yes, it is a beautiful and natural equation

Consider g as the density of the measure
gdy.
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Consider a convex polyhedron C' C R<.
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Consider a convex polyhedron C' C RY. At any
point z € 9C, denote n¢ the set of outward
normals. Define then a measure on S%~! by

(1) oc(A):=area{x € 9C | nc(x) C A}.

If C is strongly convex, o is linked to the
GauBian curvature k of C. However, it is
“rather nice” even for polyhedra, while % is not.
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Minkowski's problem

Consider a convex polyhedron C' C RY. At any
point z € 9C, denote n¢ the set of outward
normals. Define then a measure on S%~! by

(1) oc(A):=area{x € 9C | nc(x) C A}.

If C is strongly convex, o is linked to the
GauBian curvature k of C. However, it is
“rather nice” even for polyhedra, while % is not.

Minkowski's problem Given o a measure on S?~!, find a convex C satisfying (1).
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Minkowski's solution (1/2)

Not any measure o = S_~ | 0,0, is the surface area of a
bounded polyhedron.
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Minkowski's solution (1/2)

Not any measure o = S_~ | 0,0, is the surface area of a
bounded polyhedron. Necessary condition:

(2) Z’L)iO'i =0.

A shift along e € S%~! preserves the total volume, but
each face contributes with (e, v;) ;, which must sum 0.
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Minkowski's solution (1/2)

Not any measure o = S_~ | 0,0, is the surface area of a
bounded polyhedron. Necessary condition:

(2) Z’L)iO'i =0.

A shift along e € S%~! preserves the total volume, but
each face contributes with (e, v;) ;, which must sum 0.

Theorem — Minkowski [Min97]  Any measure 0 = S IV | 0;4,, satisfying (2) is the
surface area of a polyhedron that is unique up to translations.
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Minkowski's solution (2/2)

Steps of the solutions:

e Approximate the measure o(-) by finite
combination of Dirac masses.
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Steps of the solutions:

e Approximate the measure o(-) by finite
combination of Dirac masses.

e Prove that C exists (and is unique up to
rigid motions) for such simple measures.

e Pass to the limit in the weak sense for
measures (and in convex sets!).
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Minkowski's solution (2/2)

Steps of the solutions:

e Approximate the measure o(-) by finite
combination of Dirac masses.
e Prove that C exists (and is unique up to
rigid motions) for such simple measures.
e Pass to the limit in the weak sense for
measures (and in convex sets!).
Step 3 was very influential. Step 2 is the hard
beautiful one:
topological method.
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Steps of the solutions: Fix v1,--+ ,Um € S*! and consider all

o Approximate the measure o(-) by finite 01, ,0m > 0 such that 371" oyv; = 0.
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Steps of the solutions: Fix v1,--+ ,Um € S*! and consider all
o Approximate the measure o(-) by finite 01, ,0m > 0 such that 371" oyv; = 0.
combination of Dirac masses. Some of these are images of convex polyhedra

e Prove that C exists (and is unique up to with face normals (v;);.

rigid motions) for such simple measures.

e Pass to the limit in the weak sense for
measures (and in convex sets!).
Step 3 was very influential. Step 2 is the hard
beautiful one:
topological method.
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Steps of the solutions: Fix v1,--+ ,Um € S*! and consider all
o Approximate the measure o(-) by finite 01, ,0m > 0 such that 371" oyv; = 0.
combination of Dirac masses. Some of these are images of convex polyhedra

with face normals (v;);. Im: C — (o1, ,0m)
is continuous and injective between connected
manifolds of equal dimension, and

e Prove that C exists (and is unique up to
rigid motions) for such simple measures.

e Pass to the limit in the weak sense for

measures (and in convex sets!). Im(Cy) =c® w0 =

Step 3 was very influential. Step 2 is the hard 3C = lim Cy, with Im(C) = 0.
beautiful one: k

topological method.
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Minkowski's solution (2/2)

Steps of the solutions: Fix v1,--+ ,Um € S*! and consider all
o Approximate the measure o(-) by finite 01, ,0m > 0 such that 371" oyv; = 0.
combination of Dirac masses. Some of these are images of convex polyhedra

with face normals (v;);. Im: C — (o1, ,0m)
is continuous and injective between connected
manifolds of equal dimension, and

e Prove that C exists (and is unique up to
rigid motions) for such simple measures.

e Pass to the limit in the weak sense for

measures (and in convex sets!). Im(Cy) =c® w0 =
Step 3 was very influential. Step 2 is the hard 3C = lim Cy, with Im(C) = 0.
beautiful one: k

topological method. By Alexandrov’'s mapping lemma, Im is onto!.

LA. V. Pogorelov. The Minkowski Multidimensional Problem. Scripta Series in Mathematics. Washington : New
York, 1978.
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T€EA

Averil Aussedat Monge-Ampére 9/17



Alexandrov

0O000e00

Towards Alexandrov solutions

If u : RY — R is convex, its hypergraph hyp(u) is so.

Def — Monge-Ampére measure  Define pu, as
the measure on R? given by

Hu (A) = Leb( U Mhyp(u) (ZE))

T€EA

Averil Aussedat Monge-Ampére 9/17



Alexandrov

0O000e00

Towards Alexandrov solutions

If u : RY — R is convex, its hypergraph hyp(u) is so.

Def — Monge-Ampére measure  Define pu, as
the measure on R? given by

Hu (A) = Leb( U Mhyp(u) (ZE))

T€EA

Averil Aussedat Monge-Ampére 9/17



Alexandrov

0O000e00

Towards Alexandrov solutions

If u : RY — R is convex, its hypergraph hyp(u) is so.

Def — Monge-Ampére measure  Define pu, as
the measure on R? given by

Hu (A) = Leb( U Mhyp(u) (ZE))
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Again linked to the GauBian curvature but better defined.
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Towards Alexandrov solutions

If u : RY — R is convex, its hypergraph hyp(u) is so.

Def — Monge-Ampére measure  Define pu, as
the measure on R? given by

Hu (A) = Leb( U Mhyp(u) (ZE))

T€EA

Again linked to the GauBian curvature but better defined.

If u € C? and convex, the change of variable v = Vu(z) gives dv = det V2u(x)dx, and

tu(A) = Leb <U {Vu(x)}) = /eRd Ty a)(v)dv = /GA det Vu(z)dz.

TEA
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Alexandrov solutions

Def — Alexandrov solution A convex function u : © — R is called an Alexandrov
solution of det V2u = f/g(Vu) if

_f
9(Vu)

Mo, dx

as measures. (Here Vu(z) is defined almost everywhere since w is locally Lipschitz.)
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solution of det V2u = f/g(Vu) if
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as measures. (Here Vu(z) is defined almost everywhere since w is locally Lipschitz.)

e stability: u,, — u locally uniformly implies i, — p,, narrowly.
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Def — Alexandrov solution A convex function u : © — R is called an Alexandrov
solution of det V2u = f/g(Vu) if

_f
9(Vu)

Mo, dx

as measures. (Here Vu(z) is defined almost everywhere since w is locally Lipschitz.)

e stability: u,, — u locally uniformly implies i, — p,, narrowly.

e comparison: if u < v on the boundary of a convex domain, and i, > p,, then u < v.
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Alexandrov solutions

Def — Alexandrov solution A convex function u : © — R is called an Alexandrov
solution of det V2u = f/g(Vu) if

_f
9(Vu)

Mo, dx

as measures. (Here Vu(z) is defined almost everywhere since w is locally Lipschitz.)

e stability: u,, — u locally uniformly implies i, — p,, narrowly.
e comparison: if u < v on the boundary of a convex domain, and i, > p,, then u < v.

e existence: by Perron’'s method. Uniqueness by comparison, hence full well-posedness!
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e Viscosity solutions: Generalized Dedekind cuts whenever the equation is monotone in a
certain sense (Evans, Crandall, Lions, Ishii).

e LP viscosity solutions: Weakening (!) of the previous definition, looking for continuous
solutions with I/Vlzf test functions (Caffarelli, Crandall, Kocan, Swiech)...

Averil Aussedat Monge-Ampére 11 /17



Alexandrov
000000e

Zoology of solutions

e Distributional solutions, in particular in WP,

e Good solutions: limits of smooth solutions to regularized equations (Escauriaza, Fabes,
Krylov, Safanov).

e Viscosity solutions: Generalized Dedekind cuts whenever the equation is monotone in a
certain sense (Evans, Crandall, Lions, Ishii).

e LP viscosity solutions: Weakening (!) of the previous definition, looking for continuous
solutions with I/Vlzf test functions (Caffarelli, Crandall, Kocan, Swiech)...

... but all more or less equivalent?, and sharing estimates and tools.

2R. R. Jensen. Uniformly Elliptic PDEs with Bounded, Measurable Coefficients. Journal of Fourier Analysis and

Applications, 2(3):237-259, June 1995
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The Monge in Monge-Ampére

(MA) g(Vu(zx)) det Viu(z) = f(x).

Introduce p : z — Vu(z). As we saw, (MA) imposes that the measure p := fdx is pushed on
v = gdy by y = p(x). In the notations of optimal transport, p#u = v.
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The Monge in Monge-Ampére

(MA) g(Vu(zx)) det Viu(z) = f(x).

Introduce p : z — Vu(z). As we saw, (MA) imposes that the measure p := fdx is pushed on
v = gdy by y = p(x). In the notations of optimal transport, p#u = v.

Def — Monge problem  Given pu,v measures,

e 4

find a map p minimizing \ \\ o v
2

| o) duta) . .

among the maps such that p#u = v. /'
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The Monge Kantorovich in Monge-Ampére

(MA) g(Vu(zx))det Viu(z) = f(x).

Introduce p : z — Vu(z). As we saw, (MA) imposes that the measure y := fdx is pushed on
v = gdy by y = p(z). In the notations of optimal transport, p#u = v.

Def — MK problem Given p,v measures, o LI
find a-map—p a measure 1) minimizing \ \\ ©
|t [ = af o) ;
Q (z,y)€Q? ® v ®
among the maps—such-thatp#1—=+ plans such /'
that m,#mn = p and wy#n = v. . .
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Wonders of Kantorovich relaxation

Theorem — Existence of an optimal plan  Let p, v be Borel probability measures such
that [ |z|°du < oo and [ |z|* dv < co. Then there exists an optimal plan 7.
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Wonders of Kantorovich relaxation

Theorem — Existence of an optimal plan  Let p, v be Borel probability measures such
that [ |z|°du < oo and [ |z|* dv < co. Then there exists an optimal plan 7.

Theorem — Brenier-McCann theorem  Assume that ¢ = fdx has a density with
respect to the Lebesgue measure. Then

e the optimal plan 7 is unique,
e it has the form n = (id, p)#u for some vector field p € L2,

e there exists a convex function u : R? — R U {oc} such that p(z) € du(x) for
p—almost every .
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Wonders of Kantorovich relaxation

Theorem — Existence of an optimal plan  Let p, v be Borel probability measures such
that [ |z|°du < oo and [ |z|* dv < co. Then there exists an optimal plan 7.

Theorem — Brenier-McCann theorem  Assume that ¢ = fdx has a density with
respect to the Lebesgue measure. Then

e the optimal plan 7 is unique,
e it has the form n = (id, p)#u for some vector field p € L2,

e there exists a convex function u : R? — R U {oc} such that p(z) € du(x) for
p—almost every .

The minimal condition for this theorem to hold has been found by Gigli [Gigl1].
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Brenier solutions

(MA) g(Vu(x)) det Viu(z) = f(x).

Def — Brenier solution Let yu = f(-)dx. A lower semi-continuous convex function
u:R? - RU {400} is a Brenier solution of (MA) if Vu#tu = v.
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Def — Brenier solution Let yu = f(-)dx. A lower semi-continuous convex function
u:R? - RU {400} is a Brenier solution of (MA) if Vu#tu = v.

A whole new world of problems

e Existence and uniqueness: solved by the
Brenier-McCann-Gigli theorem.
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(MA) g(Vu(x)) det Viu(z) = f(x).

Def — Brenier solution Let yu = f(-)dx. A lower semi-continuous convex function
u:R? - RU {400} is a Brenier solution of (MA) if Vu#tu = v.

A whole new world of problems

e Existence and uniqueness: solved by the
Brenier-McCann-Gigli theorem.

e Stability?
e Regularity?
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Brenier solutions

(MA) g(Vu(x)) det Viu(z) = f(x).

Def — Brenier solution Let yu = f(-)dx. A lower semi-continuous convex function
u:R? - RU {400} is a Brenier solution of (MA) if Vu#tu = v.

A whole new world of problems

e Existence and uniqueness: solved by the
Brenier-McCann-Gigli theorem.

e Stability?
e Regularity?

e Links with Alexandrov/viscosity/... solutions?
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Stability

A (cheating) stability result using [Vil09, Theorem 5.20]:

Proposition  If (pn)n —n i, (Vn)n —n v, and there exists a unique optimal transport
map T between ;1 and v, then any family (7},),, of optimal transport maps between i,
and v, converge to T.
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Not very interesting compared to the “true” stability result holding at the level of plans.
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A (cheating) stability result using [Vil09, Theorem 5.20]:

Proposition  If (pn)n —n i, (Vn)n —n v, and there exists a unique optimal transport
map T between ;1 and v, then any family (7},),, of optimal transport maps between i,
and v, converge to T.

Not very interesting compared to the “true” stability result holding at the level of plans.
Some quantitative stability if © = fdx is sufficiently regular: for instance, in [MDC20], the

Proposition If 0 < ¢f < f < Cf < oo uniformly over a compact convex set X, then
for any compact K C R?, there exists C' = Cq,k,x such that

T, — Tl < Cd,l/(,?l(u, v) Vu,v € P9(Q)  with support in K.

Averil Aussedat Monge-Ampére
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Some results on regularity

e Regularity results by Alexandrov and Pogorelov [Figl7, Theorem 2.22]: if C C RY is
convex, and o¢ has a bounded density with respect to Hga—1, then OC is of class cl.
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Some results on regularity

e Regularity results by Alexandrov and Pogorelov [Figl7, Theorem 2.22]: if C C RY is
convex, and o¢ has a bounded density with respect to Hga—1, then OC is of class cl.

o Caffarelli estimates to prove W2 regularity of solutions of irregular uniformly elliptic
equations if the source term is not too big [Caf89].

Averil Aussedat Monge-Ampére 17 /17



Brenier
00000e

Some results on regularity

e Regularity results by Alexandrov and Pogorelov [Figl7, Theorem 2.22]: if C C RY is
convex, and o¢ has a bounded density with respect to Hga—1, then OC is of class cl.

o Caffarelli estimates to prove W2 regularity of solutions of irregular uniformly elliptic
equations if the source term is not too big [Caf89].

e Ma-Triidinger-Wang condition on the derivatives of the cost to obtain interior C3
smoothness if f, g are smooth and the domain is “convex” [MTWO05, Theorem 2.1].

Averil Aussedat Monge-Ampére 17 /17



Brenier
00000e

Some results on regularity

e Regularity results by Alexandrov and Pogorelov [Figl7, Theorem 2.22]: if C C RY is
convex, and o¢ has a bounded density with respect to Hga—1, then OC is of class cl.

o Caffarelli estimates to prove W2 regularity of solutions of irregular uniformly elliptic
equations if the source term is not too big [Caf89].

e Ma-Triidinger-Wang condition on the derivatives of the cost to obtain interior C3
smoothness if f, g are smooth and the domain is “convex” [MTWO05, Theorem 2.1].

e Interior regularity by Figalli and De Philippis removes the convexity assumption, at the
expense of switching to W21 regularity...

Averil Aussedat Monge-Ampére 17 /17



Brenier
00000e

Some results on regularity

e Regularity results by Alexandrov and Pogorelov [Figl7, Theorem 2.22]: if C C RY is
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o Caffarelli estimates to prove W2 regularity of solutions of irregular uniformly elliptic
equations if the source term is not too big [Caf89].

e Ma-Triidinger-Wang condition on the derivatives of the cost to obtain interior C3
smoothness if f, g are smooth and the domain is “convex” [MTWO05, Theorem 2.1].

e Interior regularity by Figalli and De Philippis removes the convexity assumption, at the
expense of switching to W21 regularity...

. and the story keeps writing itself.
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