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Meaning of the equation Alexandrov Brenier References

Monge-Ampère

Let Ω ⊂ Rd be a given domain.

Def The Monge-Ampère (MA) equation looks for a convex function u : Ω → R satisfying

(MA) det
(
∇2u(x)

)
=

f(x)

g(∇u(x))
, and boundary conditions.

Here ∇2u(x) is the Hessian matrix of u, and f, g are given.

In general, the right hand-side can be written f(x, u(x),∇u(x)), but let us stick to (MA).
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In which you realise that yes, it is a beautiful and natural equation

Consider g as the density of the measure
gdy.

Under the change of variable

y = ∇u(x),

it becomes

g(∇u(x)) det
(
∇2u(x)

)
dx,

that we want to equate to fdx.

The equation (MA) seeks the change
of variable y = ∇u(x) sending the
measure fdx on the measure gdy.
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Minkowski’s problem

Consider a convex polyhedron C ⊂ Rd.

At any
point x ∈ ∂C, denote nC the set of outward
normals. Define then a measure on Sd−1 by

(1) σC(A) := area {x ∈ ∂C | nC(x) ⊂ A} .

If C is strongly convex, σ is linked to the
Gaußian curvature κ of ∂C. However, it is
“rather nice” even for polyhedra, while κ is not.

Minkowski’s problem Given σ a measure on Sd−1, find a convex C satisfying (1).
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Minkowski’s solution (1/2)

Not any measure σ =
∑N

i=1 σiδvi is the surface area of a
bounded polyhedron.

Necessary condition:

(2)
N∑
i=1

viσi = 0.

A shift along e ∈ Sd−1 preserves the total volume, but
each face contributes with ⟨e, vi⟩σi, which must sum 0.

Theorem – Minkowski [Min97] Any measure σ =
∑N

i=1 σiδvi satisfying (2) is the
surface area of a polyhedron that is unique up to translations.
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Minkowski’s solution (2/2)

Steps of the solutions:
• Approximate the measure σ(·) by finite

combination of Dirac masses.

• Prove that C exists (and is unique up to
rigid motions) for such simple measures.

• Pass to the limit in the weak sense for
measures (and in convex sets!).

Step 3 was very influential. Step 2 is the hard
beautiful one:

topological method.

Fix v1, · · · , vm ∈ Sn−1 and consider all
σ1, · · · , σm > 0 such that

∑m
i=1 σivi = 0.

Some of these are images of convex polyhedra
with face normals (vi)i. Im : C → (σ1, · · · , σm)
is continuous and injective between connected
manifolds of equal dimension, and

Im(Ck) = σk →k σ =⇒
∃C = lim

k
Ck with Im(C) = σ.

By Alexandrov’s mapping lemma, Im is onto1.

1A. V. Pogorelov. The Minkowski Multidimensional Problem. Scripta Series in Mathematics. Washington : New
York, 1978.
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Towards Alexandrov solutions

If u : Rd → R is convex, its hypergraph hyp(u) is so.

Def – Monge-Ampère measure Define µu as
the measure on Rd given by

µu (A) := Leb
( ⋃
x∈A

nhyp(u)(x)
)
.

Again linked to the Gaußian curvature but better defined.

If u ∈ C2 and convex, the change of variable v = ∇u(x) gives dv = det∇2u(x)dx, and

µu(A) = Leb

(⋃
x∈A

{∇u(x)}

)
=

∫
v∈Rd

1I∇u(A)(v)dv =

∫
x∈A

det∇2u(x)dx.
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Alexandrov solutions

Def – Alexandrov solution A convex function u : Ω → R is called an Alexandrov
solution of det∇2u = f/g(∇u) if

µu =
f

g(∇u)
dx

as measures. (Here ∇u(x) is defined almost everywhere since u is locally Lipschitz.)

• stability: un → u locally uniformly implies µun ⇀n µu narrowly.
• comparison: if u ⩽ v on the boundary of a convex domain, and µu ⩾ µv, then u ⩽ v.
• existence: by Perron’s method. Uniqueness by comparison, hence full well-posedness!
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• stability: un → u locally uniformly implies µun ⇀n µu narrowly.
• comparison: if u ⩽ v on the boundary of a convex domain, and µu ⩾ µv, then u ⩽ v.
• existence: by Perron’s method. Uniqueness by comparison, hence full well-posedness!
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Zoology of solutions

• Distributional solutions, in particular in W 2,p.

• Good solutions: limits of smooth solutions to regularized equations (Escauriaza, Fabes,
Krylov, Safanov).

• Viscosity solutions: Generalized Dedekind cuts whenever the equation is monotone in a
certain sense (Evans, Crandall, Lions, Ishii).

• Lp viscosity solutions: Weakening (!) of the previous definition, looking for continuous
solutions with W 2,p

loc test functions (Caffarelli, Crandall, Kocan, Świȩch)...

... but all more or less equivalent2, and sharing estimates and tools.

2R. R. Jensen. Uniformly Elliptic PDEs with Bounded, Measurable Coefficients. Journal of Fourier Analysis and
Applications, 2(3):237–259, June 1995
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The Monge in Monge-Ampère

(MA) g(∇u(x)) det∇2u(x) = f(x).

Introduce p : x 7→ ∇u(x). As we saw, (MA) imposes that the measure µ := fdx is pushed on
ν := gdy by y = p(x). In the notations of optimal transport, p#µ = ν.

Def – Monge problem Given µ, ν measures,
find a map p minimizing∫

x∈Ω
|p(x)|2 dµ(x)

among the maps such that p#µ = ν.

Averil Aussedat Monge-Ampère 13 / 17



Meaning of the equation Alexandrov Brenier References

The Monge in Monge-Ampère

(MA) g(∇u(x)) det∇2u(x) = f(x).

Introduce p : x 7→ ∇u(x). As we saw, (MA) imposes that the measure µ := fdx is pushed on
ν := gdy by y = p(x). In the notations of optimal transport, p#µ = ν.

Def – Monge problem Given µ, ν measures,
find a map p minimizing∫

x∈Ω
|p(x)|2 dµ(x)

among the maps such that p#µ = ν.

Averil Aussedat Monge-Ampère 13 / 17



Meaning of the equation Alexandrov Brenier References

The Monge in Monge-Ampère

(MA) g(∇u(x)) det∇2u(x) = f(x).

Introduce p : x 7→ ∇u(x). As we saw, (MA) imposes that the measure µ := fdx is pushed on
ν := gdy by y = p(x). In the notations of optimal transport, p#µ = ν.

Def – Monge problem Given µ, ν measures,
find a map p minimizing∫

x∈Ω
|p(x)|2 dµ(x)

among the maps such that p#µ = ν.

Averil Aussedat Monge-Ampère 13 / 17



Meaning of the equation Alexandrov Brenier References

The Monge in Monge-Ampère

(MA) g(∇u(x)) det∇2u(x) = f(x).

Introduce p : x 7→ ∇u(x). As we saw, (MA) imposes that the measure µ := fdx is pushed on
ν := gdy by y = p(x). In the notations of optimal transport, p#µ = ν.

Def – Monge problem Given µ, ν measures,
find a map p minimizing∫

x∈Ω
|p(x)|2 dµ(x)

among the maps such that p#µ = ν.

Averil Aussedat Monge-Ampère 13 / 17



Meaning of the equation Alexandrov Brenier References

The �����Monge Kantorovich in Monge-Ampère

(MA) g(∇u(x)) det∇2u(x) = f(x).

Introduce p : x 7→ ∇u(x). As we saw, (MA) imposes that the measure µ := fdx is pushed on
ν := gdy by y = p(x). In the notations of optimal transport, p#µ = ν.

Def – MK problem Given µ, ν measures,
find a map p a measure η minimizing

���������
∫
x∈Ω

|p(x)|2 dµ(x)
∫
(x,y)∈Ω2

|y − x|2 dη(x)

among the maps such that p#µ = ν plans such
that πx#η = µ and πy#η = ν.
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Wonders of Kantorovich relaxation

Theorem – Existence of an optimal plan Let µ, ν be Borel probability measures such
that

∫
|x|2 dµ < ∞ and

∫
|x|2 dν < ∞. Then there exists an optimal plan η.

Theorem – Brenier-McCann theorem Assume that µ = fdx has a density with
respect to the Lebesgue measure. Then

• the optimal plan η is unique,
• it has the form η = (id, p)#µ for some vector field p ∈ L2

µ,

• there exists a convex function u : Rd → R ∪ {∞} such that p(x) ∈ ∂u(x) for
µ−almost every x.

The minimal condition for this theorem to hold has been found by Gigli [Gig11].
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Brenier solutions (the last ones, I promise)

(MA) g(∇u(x)) det∇2u(x) = f(x).

Def – Brenier solution Let µ = f(·)dx. A lower semi-continuous convex function
u : Rd → R ∪ {+∞} is a Brenier solution of (MA) if ∇u#µ = ν.

A whole new world of problems
• Existence and uniqueness: solved by the

Brenier-McCann-Gigli theorem.
• Stability?
• Regularity?
• Links with Alexandrov/viscosity/... solutions?
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Stability

A (cheating) stability result using [Vil09, Theorem 5.20]:

Proposition If (µn)n ⇀n µ, (νn)n ⇀n ν, and there exists a unique optimal transport
map T between µ and ν, then any family (Tn)n of optimal transport maps between µn

and νn converge to T .

Not very interesting compared to the “true” stability result holding at the level of plans.
Some quantitative stability if µ = fdx is sufficiently regular: for instance, in [MDC20], the

Proposition If 0 < cf ⩽ f ⩽ Cf < ∞ uniformly over a compact convex set X , then
for any compact K ⊂ Rd, there exists C = Cd,K,X such that

∥Tν − Tω∥µ ⩽ Cd
1/6
W,1(µ, ν) ∀µ, ν ∈ P2(Ω) with support in K.
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Some results on regularity

• Regularity results by Alexandrov and Pogorelov [Fig17, Theorem 2.22]: if C ⊂ Rd is
convex, and σC has a bounded density with respect to HSd−1 , then ∂C is of class C1.

• Caffarelli estimates to prove W 2,p regularity of solutions of irregular uniformly elliptic
equations if the source term is not too big [Caf89].

• Ma-Trüdinger-Wang condition on the derivatives of the cost to obtain interior C3

smoothness if f, g are smooth and the domain is “convex” [MTW05, Theorem 2.1].

• Interior regularity by Figalli and De Philippis removes the convexity assumption, at the
expense of switching to W 2,1 regularity...

... and the story keeps writing itself.
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Thank you !
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