Monge-Ampère

A newbie's understanding of the story of this equation

Averil Aussedat Séminaire LMI/LMRS 10 décembre 2024 INSA 🐼 anr®

Meaning of the equation	Alexandrov	Brenier	References
00	000000	000000	
Monge-Ampère			

Let $\Omega \subset \mathbb{R}^d$ be a given domain.

Def The Monge-Ampère (MA) equation looks for a convex function $u: \Omega \to \mathbb{R}$ satisfying

(MA)
$$\det (\nabla^2 u(x)) = \frac{f(x)}{g(\nabla u(x))}$$
, and boundary conditions.

Here $\nabla^2 u(x)$ is the Hessian matrix of u, and f, g are given.

Meaning of the equation	Alexandrov 0000000	Brenier 000000	References

Let $\Omega \subset \mathbb{R}^d$ be a given domain.

Monge-Ampère

Def The Monge-Ampère (MA) equation looks for a convex function $u: \Omega \to \mathbb{R}$ satisfying

(MA)
$$\det \left(\nabla^2 u(x) \right) = \frac{f(x)}{g(\nabla u(x))},$$
 and boundary conditions.

Here $\nabla^2 u(x)$ is the Hessian matrix of u, and f, g are given.

In general, the right hand-side can be written $\overline{f}(x, u(x), \nabla u(x))$, but let us stick to (MA).

Meaning of the equation	Alexandrov	Brenier	References
●○	0000000	000000	

Table of Contents

Meaning of the equation

Alexandrov solutions

Brenier solutions

Consider g as the density of the measure gdy.

Consider g as the density of the measure gdy. Under the change of variable

$$y = \nabla u(x),$$

it becomes

 $g(\nabla u(x)) \det \left(\nabla^2 u(x)\right) dx,$

that we want to equate to f dx.

Consider g as the density of the measure gdy. Under the change of variable

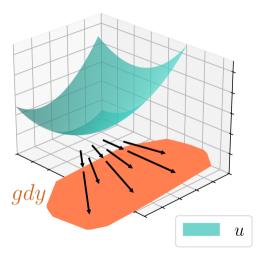
$$y = \nabla u(x),$$

it becomes

 $g(\nabla u(x)) \det (\nabla^2 u(x)) dx,$

that we want to equate to f dx.

The equation (MA) seeks the *change* of variable $y = \nabla u(x)$ sending the measure fdx on the measure gdy.



Consider g as the density of the measure gdy. Under the change of variable

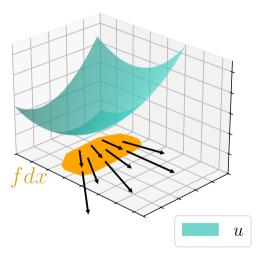
$$y = \nabla u(x),$$

it becomes

 $g(\nabla u(x)) \det (\nabla^2 u(x)) dx,$

that we want to equate to f dx.

The equation (MA) seeks the *change* of variable $y = \nabla u(x)$ sending the measure fdx on the measure gdy.



Meaning of the equation	Alexandrov ●000000	Brenier 000000	References

Table of Contents

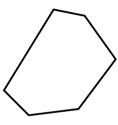
Meaning of the equation

Alexandrov solutions

Brenier solutions

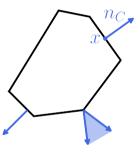
Meaning of the equation	Alexandrov	Brenier	References
00	0●00000	000000	
N 40 1 1 1 1 1 1 1			

Consider a convex polyhedron $C \subset \mathbb{R}^d$.



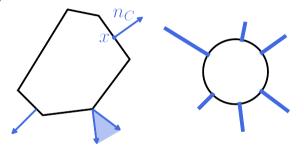
Meaning of the equation	Alexandrov	Brenier	References
00	0●00000	000000	
Minkowski's problem			

Consider a convex polyhedron $C \subset \mathbb{R}^d$. At any point $x \in \partial C$, denote n_C the set of outward normals.



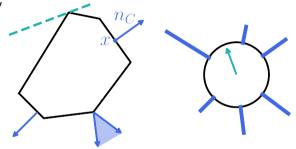
Meaning of the equation	Alexandrov ⊙●00000	Brenier 000000	References
N A + 1 1 + 7			

(1)
$$\sigma_C(A) \coloneqq \text{area} \{ x \in \partial C \mid n_C(x) \subset A \}.$$



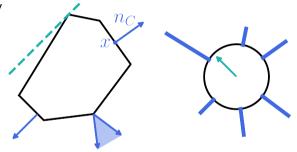
Meaning of the equation	Alexandrov 0●00000	Brenier 000000	References
NA1 1 1 1			

(1)
$$\sigma_C(A) \coloneqq \text{area} \{ x \in \partial C \mid n_C(x) \subset A \}.$$



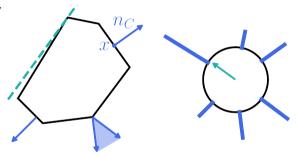
Meaning of the equation	Alexandrov 0●00000	Brenier 000000	References

(1)
$$\sigma_C(A) \coloneqq \text{area} \{ x \in \partial C \mid n_C(x) \subset A \}.$$



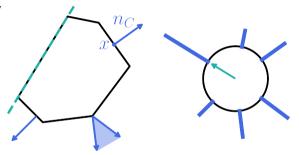
Meaning of the equation	Alexandrov o●ooooo	Brenier 000000	References	

(1)
$$\sigma_C(A) \coloneqq \text{area} \{ x \in \partial C \mid n_C(x) \subset A \}.$$



Meaning of the equation	Alexandrov	Brenier	References
00	0●00000	000000	

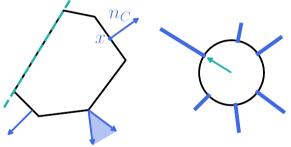
(1)
$$\sigma_C(A) \coloneqq \text{area} \{ x \in \partial C \mid n_C(x) \subset A \}.$$



Consider a convex polyhedron $C \subset \mathbb{R}^d$. At any point $x \in \partial C$, denote n_C the set of outward normals. Define then a measure on \mathbb{S}^{d-1} by

(1)
$$\sigma_C(A) \coloneqq \text{area} \{ x \in \partial C \mid n_C(x) \subset A \}.$$

If C is strongly convex, σ is linked to the Gaußian curvature κ of ∂C . However, it is "rather nice" even for polyhedra, while κ is not.

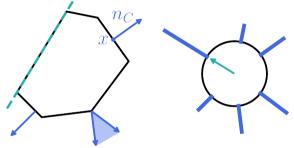


Meaning of the equation	Alexandrov 0●00000	Brenier 000000	References

Consider a convex polyhedron $C \subset \mathbb{R}^d$. At any point $x \in \partial C$, denote n_C the set of outward normals. Define then a measure on \mathbb{S}^{d-1} by

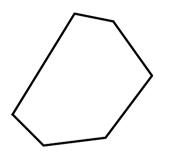
(1)
$$\sigma_C(A) \coloneqq \text{area} \left\{ x \in \partial C \mid n_C(x) \subset A \right\}.$$

If C is strongly convex, σ is linked to the Gaußian curvature κ of ∂C . However, it is "rather nice" even for polyhedra, while κ is not.



Minkowski's problem Given σ a measure on \mathbb{S}^{d-1} , find a convex C satisfying (1).

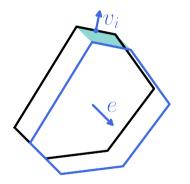
Minkowski's solution (1/2)



Not any measure $\sigma = \sum_{i=1}^{N} \sigma_i \delta_{v_i}$ is the surface area of a bounded polyhedron.

Alexandrov

0000000



Not any measure $\sigma = \sum_{i=1}^{N} \sigma_i \delta_{v_i}$ is the surface area of a bounded polyhedron. Necessary condition:

Brenier

 $\sum_{i=1}^{N} v_i \sigma_i = 0.$

A shift along $e \in \mathbb{S}^{d-1}$ preserves the total volume, but each face contributes with $\langle e, v_i \rangle \sigma_i$, which must sum 0.

Alexandrov

000000

(2)

References

Not any measure $\sigma = \sum_{i=1}^{N} \sigma_i \delta_{v_i}$ is the surface area of a bounded polyhedron. Necessary condition:

Brenier

$$\sum_{i=1}^N v_i \sigma_i = 0.$$

A shift along $e \in \mathbb{S}^{d-1}$ preserves the total volume, but each face contributes with $\langle e, v_i \rangle \sigma_i$, which must sum 0.

Theorem – Minkowski [Min97] Any measure $\sigma = \sum_{i=1}^{N} \sigma_i \delta_{v_i}$ satisfying (2) is the surface area of a polyhedron that is unique up to translations.

Alexandrov

000000

(2)

References

Meaning of the equation	Alexandrov ooo●ooo	Brenier 000000	References

Minkowski's solution (2/2)

Steps of the solutions:

• Approximate the measure $\sigma(\cdot)$ by finite combination of Dirac masses.

Minkowski's solution (2/2)

Steps of the solutions:

- Approximate the measure $\sigma(\cdot)$ by finite combination of Dirac masses.
- Prove that *C* exists (and is unique up to rigid motions) for such simple measures.

Minkowski's solution (2/2)

Steps of the solutions:

- Approximate the measure $\sigma(\cdot)$ by finite combination of Dirac masses.
- Prove that C exists (and is unique up to rigid motions) for such simple measures.
- Pass to the limit in the weak sense for measures (and in convex sets!).

Minkowski's solution (2/2)

Steps of the solutions:

- Approximate the measure $\sigma(\cdot)$ by finite combination of Dirac masses.
- Prove that C exists (and is unique up to rigid motions) for such simple measures.
- Pass to the limit in the weak sense for measures (and in convex sets!).

Step 3 was very influential. Step 2 is the hard beautiful one:

topological method.

Alexandrov

0000000

Alexandrov

0000000

Minkowski's solution (2/2)

Steps of the solutions:

- Approximate the measure $\sigma(\cdot)$ by finite combination of Dirac masses.
- Prove that C exists (and is unique up to rigid motions) for such simple measures.
- Pass to the limit in the weak sense for measures (and in convex sets!).

Step 3 was very influential. Step 2 is the $\ensuremath{\mathsf{hard}}$ beautiful one:

topological method.

Fix $v_1, \dots, v_m \in \mathbb{S}^{n-1}$ and consider all $\sigma_1, \dots, \sigma_m > 0$ such that $\sum_{i=1}^m \sigma_i v_i = 0$.

Brenier

References

Minkowski's solution (2/2)

Steps of the solutions:

- Approximate the measure $\sigma(\cdot)$ by finite combination of Dirac masses.
- Prove that C exists (and is unique up to rigid motions) for such simple measures.
- Pass to the limit in the weak sense for measures (and in convex sets!).

Step 3 was very influential. Step 2 is the $\ensuremath{\mathsf{hard}}$ beautiful one:

topological method.

Fix $v_1, \dots, v_m \in \mathbb{S}^{n-1}$ and consider all $\sigma_1, \dots, \sigma_m > 0$ such that $\sum_{i=1}^m \sigma_i v_i = 0$. Some of these are images of convex polyhedra with face normals $(v_i)_i$.

Minkowski's solution (2/2)

Steps of the solutions:

- Approximate the measure $\sigma(\cdot)$ by finite combination of Dirac masses.
- Prove that C exists (and is unique up to rigid motions) for such simple measures.
- Pass to the limit in the weak sense for measures (and in convex sets!).

Step 3 was very influential. Step 2 is the $\ensuremath{\mathsf{hard}}$ beautiful one:

topological method.

Fix $v_1, \dots, v_m \in \mathbb{S}^{n-1}$ and consider all $\sigma_1, \dots, \sigma_m > 0$ such that $\sum_{i=1}^m \sigma_i v_i = 0$. Some of these are images of convex polyhedra with face normals $(v_i)_i$. Im : $C \to (\sigma_1, \dots, \sigma_m)$ is continuous and injective between connected manifolds of equal dimension, and

$$\operatorname{Im}(C_k) = \sigma^k \to_k \sigma \implies$$
$$\exists C = \lim_k C_k \text{ with } \operatorname{Im}(C) = \sigma.$$

Minkowski's solution (2/2)

Steps of the solutions:

- Approximate the measure $\sigma(\cdot)$ by finite combination of Dirac masses.
- Prove that C exists (and is unique up to rigid motions) for such simple measures.
- Pass to the limit in the weak sense for measures (and in convex sets!).

Step 3 was very influential. Step 2 is the $\ensuremath{\mathsf{hard}}$ beautiful one:

topological method.

Fix $v_1, \dots, v_m \in \mathbb{S}^{n-1}$ and consider all $\sigma_1, \dots, \sigma_m > 0$ such that $\sum_{i=1}^m \sigma_i v_i = 0$. Some of these are images of convex polyhedra with face normals $(v_i)_i$. Im : $C \to (\sigma_1, \dots, \sigma_m)$ is continuous and injective between connected manifolds of equal dimension, and

$$\operatorname{Im}(C_k) = \sigma^k \to_k \sigma \implies$$

$$\operatorname{IC} = \lim_k C_k \text{ with } \operatorname{Im}(C) = \sigma.$$

By Alexandrov's mapping lemma, Im is onto¹.

¹A. V. Pogorelov. *The Minkowski Multidimensional Problem*. Scripta Series in Mathematics. Washington : New York, 1978.

Meaning of the equation	Alexandrov 0000●00	Brenier 000000	References			
Towards Alexandrov solutions						

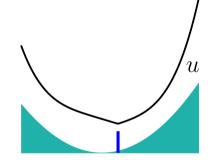
If $u:\mathbb{R}^d\to\mathbb{R}$ is convex, its hypergraph $\mathrm{hyp}(u)$ is so.

Towards Alexandrov solutions

If $u:\mathbb{R}^d\to\mathbb{R}$ is convex, its hypergraph $\mathsf{hyp}(u)$ is so.

Def – **Monge-Ampère measure** Define μ_u as the measure on \mathbb{R}^d given by

$$\mu_u(A) \coloneqq \mathsf{Leb}\big(\bigcup_{x \in A} n_{\mathsf{hyp}(u)}(x)\big).$$

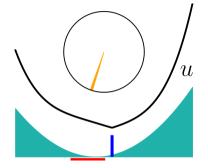


Towards Alexandrov solutions

If $u:\mathbb{R}^d\to\mathbb{R}$ is convex, its hypergraph $\mathrm{hyp}(u)$ is so.

Def – **Monge-Ampère measure** Define μ_u as the measure on \mathbb{R}^d given by

$$\mu_u(A) \coloneqq \mathsf{Leb}\big(\bigcup_{x \in A} n_{\mathsf{hyp}(u)}(x)\big).$$



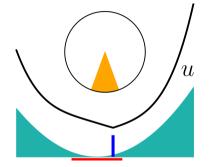
References

Towards Alexandrov solutions

If $u:\mathbb{R}^d\to\mathbb{R}$ is convex, its hypergraph $\mathsf{hyp}(u)$ is so.

Def – **Monge-Ampère measure** Define μ_u as the measure on \mathbb{R}^d given by

$$\mu_u(A) \coloneqq \mathsf{Leb}\big(\bigcup_{x \in A} n_{\mathsf{hyp}(u)}(x)\big).$$



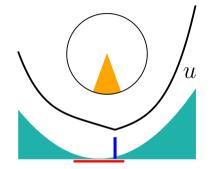
Towards Alexandrov solutions

If $u:\mathbb{R}^d\to\mathbb{R}$ is convex, its hypergraph $\mathsf{hyp}(u)$ is so.

Def – **Monge-Ampère measure** Define μ_u as the measure on \mathbb{R}^d given by

$$\mu_u(A) \coloneqq \mathsf{Leb}\big(\bigcup_{x \in A} n_{\mathsf{hyp}(u)}(x)\big).$$

Again linked to the Gaußian curvature but better defined.

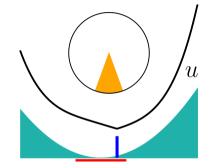


Towards Alexandrov solutions

If $u:\mathbb{R}^d\to\mathbb{R}$ is convex, its hypergraph $\mathrm{hyp}(u)$ is so.

 $\mathbf{Def} - \mathbf{Monge} - \mathbf{Ampère} \ \mathbf{measure}$ Define μ_u as the measure on \mathbb{R}^d given by

$$\mu_u(A) \coloneqq \mathsf{Leb}\big(\bigcup_{x \in A} n_{\mathsf{hyp}(u)}(x)\big).$$



Again linked to the Gaußian curvature but better defined.

If $u \in \mathcal{C}^2$ and convex, the change of variable $v = \nabla u(x)$ gives $dv = \det \nabla^2 u(x) dx$, and

$$\mu_u(A) = \mathsf{Leb}\left(\bigcup_{x \in A} \{\nabla u(x)\}\right) = \int_{v \in \mathbb{R}^d} \mathbb{I}_{\nabla u(A)}(v) dv = \int_{x \in A} \det \nabla^2 u(x) dx.$$

Meaning of the equation	Alexandrov	Brenier	References
00	00000●0	000000	
Alexandrov solutions			

Def – **Alexandrov solution** A convex function $u : \Omega \to \mathbb{R}$ is called an Alexandrov solution of det $\nabla^2 u = f/g(\nabla u)$ if

$$\mu_u = \frac{f}{g(\nabla u)} dx$$

as measures. (Here $\nabla u(x)$ is defined almost everywhere since u is locally Lipschitz.)

SOLUTIOUS

Meaning of the equation	Alexandrov	Brenier	References
00	00000●0	000000	
Alexandrey colutions			

Def – **Alexandrov solution** A convex function $u : \Omega \to \mathbb{R}$ is called an Alexandrov solution of det $\nabla^2 u = f/g(\nabla u)$ if

$$\mu_u = \frac{f}{g(\nabla u)} dx$$

as measures. (Here $\nabla u(x)$ is defined almost everywhere since u is locally Lipschitz.)

• stability: $u_n \rightarrow u$ locally uniformly implies $\mu_{u_n} \rightharpoonup_n \mu_u$ narrowly.

Meaning of the equation	Alexandrov	Brenier	References
00	00000●0	000000	
Alexandrey colutions			

Def – **Alexandrov solution** A convex function $u : \Omega \to \mathbb{R}$ is called an Alexandrov solution of det $\nabla^2 u = f/g(\nabla u)$ if

$$\mu_u = \frac{f}{g(\nabla u)} dx$$

as measures. (Here $\nabla u(x)$ is defined almost everywhere since u is locally Lipschitz.)

- stability: $u_n \rightarrow u$ locally uniformly implies $\mu_{u_n} \rightharpoonup_n \mu_u$ narrowly.
- comparison: if $u \leq v$ on the boundary of a convex domain, and $\mu_u \geq \mu_v$, then $u \leq v$.

SOLUTIONS

Meaning of the equation	Alexandrov	Brenier	References
00	00000●0	000000	
Alexandrey colutions			

Def – **Alexandrov solution** A convex function $u : \Omega \to \mathbb{R}$ is called an Alexandrov solution of det $\nabla^2 u = f/g(\nabla u)$ if

$$\mu_u = \frac{f}{g(\nabla u)} dx$$

as measures. (Here $\nabla u(x)$ is defined almost everywhere since u is locally Lipschitz.)

- stability: $u_n \rightarrow u$ locally uniformly implies $\mu_{u_n} \rightharpoonup_n \mu_u$ narrowly.
- comparison: if $u \leq v$ on the boundary of a convex domain, and $\mu_u \geq \mu_v$, then $u \leq v$.
- existence: by Perron's method. Uniqueness by comparison, hence full well-posedness!

Meaning of the equation 00	Alexandrov 000000●	Brenier 000000	References
Zoology of solutions			

• Distributional solutions, in particular in $W^{2,p}$.

Meaning of the equation	Alexandrov 000000●	Brenier 000000	References
Zoology of solutions			

- Distributional solutions, in particular in $W^{2,p}$.
- Good solutions: limits of smooth solutions to regularized equations (Escauriaza, Fabes, Krylov, Safanov).

Meaning of the equation	Alexandrov	Brenier	References
00	000000●	000000	
Zoology of solutions			

- Distributional solutions, in particular in $W^{2,p}$.
- Good solutions: limits of smooth solutions to regularized equations (Escauriaza, Fabes, Krylov, Safanov).
- Viscosity solutions: Generalized Dedekind cuts whenever the equation is monotone in a certain sense (Evans, Crandall, Lions, Ishii).

ຽ

Meaning of the equation	Alexandrov	Brenier	References
00	000000●	000000	
Zoology of solutions			

- Distributional solutions, in particular in $W^{2,p}$.
- Good solutions: limits of smooth solutions to regularized equations (Escauriaza, Fabes, Krylov, Safanov).
- Viscosity solutions: Generalized Dedekind cuts whenever the equation is monotone in a certain sense (Evans, Crandall, Lions, Ishii).
- L^p viscosity solutions: Weakening (!) of the previous definition, looking for continuous solutions with $W_{loc}^{2,p}$ test functions (Caffarelli, Crandall, Kocan, Święch)...

Meaning of the equation	Alexandrov	Brenier	References
00	000000●	000000	
Zoology of solutions			

- Distributional solutions, in particular in $W^{2,p}$.
- Good solutions: limits of smooth solutions to regularized equations (Escauriaza, Fabes, Krylov, Safanov).
- Viscosity solutions: Generalized Dedekind cuts whenever the equation is monotone in a certain sense (Evans, Crandall, Lions, Ishii).
- L^p viscosity solutions: Weakening (!) of the previous definition, looking for continuous solutions with $W_{loc}^{2,p}$ test functions (Caffarelli, Crandall, Kocan, Święch)...

... but all more or less equivalent², and sharing estimates and tools.

²R. R. Jensen. Uniformly Elliptic PDEs with Bounded, Measurable Coefficients. *Journal of Fourier Analysis and Applications*, 2(3):237–259, June 1995

Meaning of the equation	Alexandrov 0000000	Brenier ●00000	References

Table of Contents

Meaning of the equation

Alexandrov solutions

Brenier solutions

Meaning of the equation	Alexandrov	Brenier	References
00	0000000	o●oooo	

(MA)
$$g(\nabla u(x)) \det \nabla^2 u(x) = f(x).$$

Introduce $p: x \mapsto \nabla u(x)$. As we saw, (MA) imposes that the measure $\mu \coloneqq f dx$ is pushed on $\nu \coloneqq g dy$ by y = p(x). In the notations of optimal transport, $p \# \mu = \nu$.

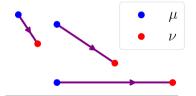
Meaning of the equation	Alexandrov 0000000	Brenier 0●0000	References

(MA)
$$g(\nabla u(x)) \det \nabla^2 u(x) = f(x).$$

Introduce $p: x \mapsto \nabla u(x)$. As we saw, (MA) imposes that the measure $\mu \coloneqq f dx$ is pushed on $\nu \coloneqq g dy$ by y = p(x). In the notations of optimal transport, $p \# \mu = \nu$.

$$\int_{x\in\Omega} |p(x)|^2 \, d\mu(x)$$

among the maps such that $p\#\mu = \nu$.



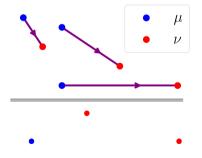
Meaning of the equation	Alexandrov 0000000	Brenier 0●0000	References

(MA)
$$g(\nabla u(x)) \det \nabla^2 u(x) = f(x).$$

Introduce $p: x \mapsto \nabla u(x)$. As we saw, (MA) imposes that the measure $\mu \coloneqq f dx$ is pushed on $\nu \coloneqq g dy$ by y = p(x). In the notations of optimal transport, $p \# \mu = \nu$.

$$\int_{x\in\Omega} |p(x)|^2 \, d\mu(x)$$

among the maps such that $p \# \mu = \nu$.



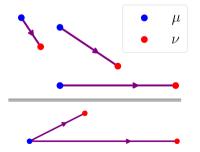
Meaning of the equation	Alexandrov 0000000	Brenier 0●0000	References

(MA)
$$g(\nabla u(x)) \det \nabla^2 u(x) = f(x).$$

Introduce $p: x \mapsto \nabla u(x)$. As we saw, (MA) imposes that the measure $\mu \coloneqq f dx$ is pushed on $\nu \coloneqq g dy$ by y = p(x). In the notations of optimal transport, $p \# \mu = \nu$.

$$\int_{x\in\Omega} |p(x)|^2 \, d\mu(x)$$

among the maps such that $p \# \mu = \nu$.



00 000000 000000	Meaning of the equation	Alexandrov 0000000	Brenier o●oooo	References
-------------------------	-------------------------	-----------------------	-------------------	------------

The Monge Kantorovich in Monge-Ampère

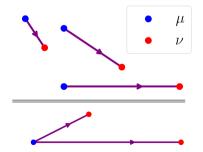
(MA)
$$g(\nabla u(x)) \det \nabla^2 u(x) = f(x).$$

Introduce $p: x \mapsto \nabla u(x)$. As we saw, (MA) imposes that the measure $\mu \coloneqq f dx$ is pushed on $\nu \coloneqq g dy$ by y = p(x). In the notations of optimal transport, $p \# \mu = \nu$.

Def – **MK** problem Given μ, ν measures, find a map p a measure η minimizing

$$\int_{x\in\Omega} |p(x)|^2 d\mu(x) \int_{(x,y)\in\Omega^2} |y-x|^2 d\eta(x)$$

among the maps such that $p\#\mu = \nu$ plans such that $\pi_x \#\eta = \mu$ and $\pi_y \#\eta = \nu$.



Meaning of the equation	Alexandrov 0000000	Brenier oo●ooo	References
	li alla arta il		

Wonders of Kantorovich relaxation

Theorem – Existence of an optimal plan Let μ, ν be Borel probability measures such that $\int |x|^2 d\mu < \infty$ and $\int |x|^2 d\nu < \infty$. Then there exists an optimal plan η .

Wonders of Kantorovich relaxation

Theorem – Existence of an optimal plan Let μ, ν be Borel probability measures such that $\int |x|^2 d\mu < \infty$ and $\int |x|^2 d\nu < \infty$. Then there exists an optimal plan η .

Theorem – Brenier-McCann theorem % f(x)=f(x) has a density with respect to the Lebesgue measure. Then

- the optimal plan η is unique,
- it has the form $\eta = (id, p) \# \mu$ for some vector field $p \in L^2_\mu$,
- there exists a convex function $u: \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$ such that $p(x) \in \partial u(x)$ for μ -almost every x.

Wonders of Kantorovich relaxation

Theorem – Existence of an optimal plan Let μ, ν be Borel probability measures such that $\int |x|^2 d\mu < \infty$ and $\int |x|^2 d\nu < \infty$. Then there exists an optimal plan η .

Theorem – Brenier-McCann theorem % f(x)=f(x) has a density with respect to the Lebesgue measure. Then

- the optimal plan η is unique,
- it has the form $\eta = (id, p) \# \mu$ for some vector field $p \in L^2_\mu$,
- there exists a convex function $u: \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$ such that $p(x) \in \partial u(x)$ for μ -almost every x.

The minimal condition for this theorem to hold has been found by Gigli [Gig11].

Brenier

Brenier solutions (the last ones, I promise)

(MA)
$$g(\nabla u(x)) \det \nabla^2 u(x) = f(x).$$

Def - **Brenier solution** Let $\mu = f(\cdot)dx$. A lower semi-continuous convex function $u : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ is a Brenier solution of (MA) if $\nabla u \# \mu = \nu$.

Brenier

Brenier solutions (the last ones, I promise)

(MA)
$$g(\nabla u(x)) \det \nabla^2 u(x) = f(x).$$

Def - **Brenier solution** Let $\mu = f(\cdot)dx$. A lower semi-continuous convex function $u: \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ is a Brenier solution of (MA) if $\nabla u \# \mu = \nu$.

A whole new world of problems

• Existence and uniqueness: solved by the Brenier-McCann-Gigli theorem.

Brenier solutions (the last ones, I promise)

(MA)
$$g(\nabla u(x)) \det \nabla^2 u(x) = f(x).$$

Def - **Brenier solution** Let $\mu = f(\cdot)dx$. A lower semi-continuous convex function $u : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ is a Brenier solution of (MA) if $\nabla u \# \mu = \nu$.

A whole new world of problems

- Existence and uniqueness: solved by the Brenier-McCann-Gigli theorem.
- Stability?

Brenier solutions (the last ones, I promise)

(MA)
$$g(\nabla u(x)) \det \nabla^2 u(x) = f(x).$$

Def - **Brenier solution** Let $\mu = f(\cdot)dx$. A lower semi-continuous convex function $u : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ is a Brenier solution of (MA) if $\nabla u \# \mu = \nu$.

A whole new world of problems

- Existence and uniqueness: solved by the Brenier-McCann-Gigli theorem.
- Stability?
- Regularity?

Brenier

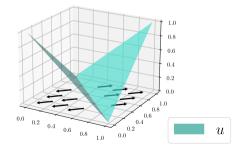
Brenier solutions (the last ones, I promise)

MA)
$$g(\nabla u(x)) \det \nabla^2 u(x) = f(x).$$

Def - **Brenier solution** Let $\mu = f(\cdot)dx$. A lower semi-continuous convex function $u : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ is a Brenier solution of (MA) if $\nabla u \# \mu = \nu$.

A whole new world of problems

- Existence and uniqueness: solved by the Brenier-McCann-Gigli theorem.
- Stability?
- Regularity?
- Links with Alexandrov/viscosity/... solutions?



Meaning of the equation 00	Alexandrov 0000000	Brenier oooooo	References
Stability			
A (cheating) stability result usin	g [Vil09, Theorem 5.20)]:	

Proposition If $(\mu_n)_n \rightharpoonup_n \mu$, $(\nu_n)_n \rightharpoonup_n \nu$, and there exists a unique optimal transport map T between μ and ν , then any family $(T_n)_n$ of optimal transport maps between μ_n and ν_n converge to T.

Meaning of the equation	Alexandrov 0000000	Brenier 0000●0	References
Stability			
A (cheating) stability result	using [Vil09, Theorem 5.20]:		

Proposition If $(\mu_n)_n \rightharpoonup_n \mu$, $(\nu_n)_n \rightharpoonup_n \nu$, and there exists a unique optimal transport map T between μ and ν , then any family $(T_n)_n$ of optimal transport maps between μ_n and ν_n converge to T.

Not very interesting compared to the "true" stability result holding at the level of plans.

Meaning of the equation 00	Alexandrov 0000000	Brenier oooo●o	References
Stability			
A (cheating) stability result using	[Vil09, Theorem 5.20]:		

Proposition If $(\mu_n)_n \rightharpoonup_n \mu$, $(\nu_n)_n \rightharpoonup_n \nu$, and there exists a unique optimal transport map T between μ and ν , then any family $(T_n)_n$ of optimal transport maps between μ_n and ν_n converge to T.

Not very interesting compared to the "true" stability result holding at the level of plans. Some quantitative stability if $\mu = f dx$ is sufficiently regular: for instance, in [MDC20], the

Proposition If $0 < c_f \leq f \leq C_f < \infty$ uniformly over a compact convex set \mathcal{X} , then for any compact $K \subset \mathbb{R}^d$, there exists $C = C_{d,K,\mathcal{X}}$ such that

 $||T_{\nu} - T_{\omega}||_{\mu} \leq C d_{\mathcal{W},1}^{1/6}(\mu,\nu) \qquad \forall \mu,\nu \in \mathscr{P}_2(\Omega) \quad \text{with support in } K.$

Meaning of the equation	Alexandrov	Brenier	References
00	0000000	00000●	
Some results on regularity			

• Regularity results by Alexandrov and Pogorelov [Fig17, Theorem 2.22]: if $C \subset \mathbb{R}^d$ is convex, and σ_C has a bounded density with respect to $\mathcal{H}_{\mathbb{S}^{d-1}}$, then ∂C is of class \mathcal{C}^1 .

Meaning of the equation	Alexandrov	Brenier	References
00	0000000	00000●	
Some results on regularity			

- Regularity results by Alexandrov and Pogorelov [Fig17, Theorem 2.22]: if $C \subset \mathbb{R}^d$ is convex, and σ_C has a bounded density with respect to $\mathcal{H}_{\mathbb{S}^{d-1}}$, then ∂C is of class \mathcal{C}^1 .
- Caffarelli estimates to prove $W^{2,p}$ regularity of solutions of irregular uniformly elliptic equations if the source term is not too big [Caf89].

Meaning of the equation	Alexandrov	Brenier	References
00	0000000	00000●	
Some results on regularity			

- Regularity results by Alexandrov and Pogorelov [Fig17, Theorem 2.22]: if $C \subset \mathbb{R}^d$ is convex, and σ_C has a bounded density with respect to $\mathcal{H}_{\mathbb{S}^{d-1}}$, then ∂C is of class \mathcal{C}^1 .
- Caffarelli estimates to prove $W^{2,p}$ regularity of solutions of irregular uniformly elliptic equations if the source term is not too big [Caf89].
- Ma-Trüdinger-Wang condition on the derivatives of the cost to obtain interior C^3 smoothness if f, g are smooth and the domain is "convex" [MTW05, Theorem 2.1].

Meaning of the equation	Alexandrov	Brenier	References
00	0000000	ooooo●	
Some results on regularity			

- Regularity results by Alexandrov and Pogorelov [Fig17, Theorem 2.22]: if $C \subset \mathbb{R}^d$ is convex, and σ_C has a bounded density with respect to $\mathcal{H}_{\mathbb{S}^{d-1}}$, then ∂C is of class \mathcal{C}^1 .
- Caffarelli estimates to prove $W^{2,p}$ regularity of solutions of irregular uniformly elliptic equations if the source term is not too big [Caf89].
- Ma-Trüdinger-Wang condition on the derivatives of the cost to obtain interior C^3 smoothness if f, g are smooth and the domain is "convex" [MTW05, Theorem 2.1].
- Interior regularity by Figalli and De Philippis removes the convexity assumption, at the expense of switching to $W^{2,1}$ regularity...

- Regularity results by Alexandrov and Pogorelov [Fig17, Theorem 2.22]: if $C \subset \mathbb{R}^d$ is convex, and σ_C has a bounded density with respect to $\mathcal{H}_{\mathbb{S}^{d-1}}$, then ∂C is of class \mathcal{C}^1 .
- Caffarelli estimates to prove $W^{2,p}$ regularity of solutions of irregular uniformly elliptic equations if the source term is not too big [Caf89].
- Ma-Trüdinger-Wang condition on the derivatives of the cost to obtain interior C^3 smoothness if f, g are smooth and the domain is "convex" [MTW05, Theorem 2.1].
- Interior regularity by Figalli and De Philippis removes the convexity assumption, at the expense of switching to $W^{2,1}$ regularity...

... and the story keeps writing itself.

Meaning of the equation	Alexandrov 0000000	Brenier 000000	References

Thank you !

- [Caf89] L. A. Caffarelli. Interior a Priori Estimates for Solutions of Fully Non-Linear Equations. Annals of Mathematics, 130(1):189–213, 1989. JSTOR: 1971480.
- [Fig17] A. Figalli. The Monge-Ampère Equation and Its Applications. Zurich Lectures in Advanced Mathematics. European Mathematical Society, Zürich, 2017.
- [Gig11] N. Gigli. On the inverse implication of Brenier-McCann theorems and the structure of (P₂(M),W₂). Methods and Applications of Analysis, 18(2):127–158, 2011.
- [Jen95] R. R. Jensen. Uniformly Elliptic PDEs with Bounded, Measurable Coefficients. Journal of Fourier Analysis and Applications, 2(3):237–259, June 1995.
- [MDC20] Q. Mérigot, A. Delalande, and F. Chazal. Quantitative stability of optimal transport maps and linearization of the 2-Wasserstein space. In *Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics*, pages 3186–3196. PMLR, June 2020.

Meaning of the equation	Alexandrov	Brenier	References
00	0000000	000000	

[Min97]	H. Minkowski. Allgemeine Lehrsätze über die convexen Polyeder. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1897:198–220, 1897.
[MTW05]	XN. Ma, N. S. Trudinger, and XJ. Wang. Regularity of Potential Functions of the Optimal Transportation Problem. <i>Archive for Rational Mechanics and Analysis</i> , 177(2):151–183, August 2005.
[Pog78]	A. V. Pogorelov. <i>The Minkowski Multidimensional Problem</i> . Scripta Series in Mathematics. Washington : New York, 1978.

[Vil09] C. Villani. *Optimal Transport*. Volume 338 of *Grundlehren Der Mathematischen Wissenschaften*. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.