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Classical viscosity solutions

Let Ω be an open set. Consider the equation (HJ)

H
(
x, u(x), Dxu(x), D

2
xu(x)

)
= 0 x ∈ Ω,

u(x) = J(x) x ∈ ∂Ω.
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Here Dxu denotes the gradient and D2
xu the Hessian matrix.
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Monotonicity

Consider H = H(x, r, p,X), with x ∈ Rd, r ∈ R, p ∈ TxRd and X ∈ Md,d symmetric.

• Non-increasing monotonicity: for all x, r, p and X,Y such that X ⩽ Y as matrices1,

H(x, r, p,X) ⩾ H(x, r, p, Y ).

• Increasing monotonicity: there exists γ > 0 such that either

H(x, r, p,X)−H(x, s, p,X) ⩾ γ(r − s),

H(x, r, p,X)−H(x, r, q,X) ⩾ γ ⟨v, p− q⟩ , for some fixed v, · · ·

The first is (almost) necessary for existence; the second is (sometimes) sufficient for uniqueness.
1In the sense that ⟨Xv, v⟩ ⩽ ⟨Y v, v⟩ for all vector v.
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Examples

• Canonical examples:

H(r,X) = r − Trace(X), H(x, p) = |p| − n(x), H(r,X) = r − det(X)

and boundary conditions.

• Equations encoding monotone aggregation of information along
characteristics:

H(x, r, p,X) = sup
a∈A

inf
b∈B

−⟨p, f [x, a, b]⟩ .

Extensions to second order, stochastic control with expectations.
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The objective

Our aim is to study well-posedness of the parabolic equation

−∂tu(t, x) +H (x,Dxu(t, x)) = 0 (t, x) ∈ [0, T )× Ω,

u(T, x) = J(x) x ∈ Ω.

In the particular case where H(x, p) = supv∈f [x]−p(v), it is
expected to characterize

V (t, x) := inf
γ∈St,x

T

J(γT ),

where St,x
T ⊂ AC([t, T ]; Ω) is the set of solutions of γ̇s ∈ f [γs]

issued from x at time t.
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Setting

Consider (Ω, d) a complete geodesic metric space with a given curvature in the sense of
Alexandrov: either

• a CAT(0) space, with d2(x, γt) ⩽ (1− t)d2(x, γ0) + td2(x, γ1)− t(1− t)d2(γ0, γ1),

• a CBB(0) space, with d2(x, γt) ⩾ (1− t)d2(x, γ0) + td2(x, γ1)− t(1− t)d2(γ0, γ1),
for all x ∈ Ω, geodesic γ ∈ C([0, 1]; Ω) and t ∈ [0, 1].

The squared distance is directionally differentiable along geodesics.
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Adapting each component of the definition

• First-order calculus
Taking a suitable closure of reparametrized geodesics gives a tangent cone (TxΩ, dx(·, ·)) at x.
Let T be the set of (x, p) with p continuous and positively homogeneous from TxΩ to R, and

H : T → R. For instance H(x, p) = sup
v∈f [x]

−p(v).

• Test functions

Let T± :=

(t, x) 7→ ψ(t)±
∑
n∈N

αnd
2(·, xn)

∣∣∣∣∣∣ ψ ∈ C1([0, T ];R), (αn)n∈N ∈ ℓ1,

αn ⩾ 0, (xn)n∈N bounded in Ω.


• Regularity A function u : Ω → R is said locally uniformly upper semicontinuous (luusc) if
B 7→ supx∈B u(x) is usc over nonempty bounded sets endowed with the Hausdorff distance.
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Definition of viscosity solutions

Let H : T → R, and consider

−∂tu(t, x) +H (x,Dxu(t, x)) = 0 (t, x) ∈ [0, T )× Ω,

u(T, x) = J(x) x ∈ Ω.

Def 1 A function u ∈ C(Ω;R) is a viscosity solution of (HJ) if u(x) = J(x),
• it is luusc, and for any (x, φ) ∈ Ω× T+ such that u(x) = φ(x) and u(y) ⩽ φ(y),

− ∂tφ(t, x) +H (x,Dxφ(x)) ⩽ 0, (subsol)

• it is lulsc, and for any (x, φ) ∈ Ω× T− such that u(x) = φ(x) and u(y) ⩾ φ(y),

− ∂tφ(t, x) +H (x,Dxφ(x)) ⩾ 0. (supersol)
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A comparison principle

(A1)

There exist C1, C2 ⩾ 0 such that for all x, y ∈ Ω, p, q ∈ TxΩ and a ⩾ 0,

|H(x, p)−H(x, q)| ⩽ C1 sup
v∈TxΩ,|v|x=1

|p(v)− q(v)| ,

H(y,−aDyd
2(x, ·))−H

(
x, aDxd

2(·, y)
)
⩽ C2 d(x, y) (1 + ad(x, y)) .

Theorem 1 Assume (A1). Let u : Ω → R be a bounded function satisfying (subsol),
and v : Ω → R bounded satisfy (supersol). Then

sup
(t,x)∈[0,T ]×Ω

u(t, x)− v(t, x) ⩽ sup
x∈Ω

u(T, x)− v(T, x).

Arguments: doubling of variable, a smooth Ekeland principle, locally uniform semicontinuity.
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CAT(0) spaces

The previous definition was introduced in CAT(0) spaces by [Jer22, JZ23]. In these spaces,

d2(x, γt) ⩽ (1− t)d2(x, γ0) + td2(x, γ1)− t(1− t)d2(γ0, γ1).
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Current investigation (1/2)

Comparison principle, stability and Perron’s method in [Jer22, JZ23].

• How to define dynamical systems?
• Existence of an optimal control?
• Characterization of the value function?

Controlled ODEs
• Gradient flows in CAT(0) spaces: Evolutionary Variational Inequalities [AGS05],

Alexandrov geometry [AKP23].
• “Axiomatic” differential inclusions in metric spaces [Aub99, Lor10, FL22].
• Well-posed controlled ODEs in CAT(0) spaces. To (x, u) ∈ Ω× U , associate a convex

Lipschitz function y 7→ f(x, u)(y), and its gradient flow Φ. A curve y ∈ AC([0, T ]; Ω)
solves ẙt = f(yt, u(t)) if for almost every t ∈ [0, T ],

lim
h↘0

d(yt+h,Φf(yt,u(t))(h, yt))

h
= 0.
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• Characterization of the value function?

Controlled ODEs
• Gradient flows in CAT(0) spaces: Evolutionary Variational Inequalities [AGS05],

Alexandrov geometry [AKP23].
• “Axiomatic” differential inclusions in metric spaces [Aub99, Lor10, FL22].
• Well-posed controlled ODEs in CAT(0) spaces. To (x, u) ∈ Ω× U , associate a convex

Lipschitz function y 7→ f(x, u)(y), and its gradient flow Φ. A curve y ∈ AC([0, T ]; Ω)
solves ẙt = f(yt, u(t)) if for almost every t ∈ [0, T ],

lim
h↘0

d(yt+h,Φf(yt,u(t))(h, yt))

h
= 0.
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Current investigation (2/2)

Existence of an optimal control
Reformulation by EVIs allows extraction in L1(0, T ;Banach space of energies) and limit.

Theorem Let f : Ω ⇒ C(Ω;R) be Lipschitz with compact values in a subset of Lipschitz
and convex potentials. The closure of the set of solutions of ẙt ∈ f(yt) issued from x ∈ Ω
in AC([0, T ]; Ω) is given by the trajectories of x 7→ convf(x).

Assume f and J are Lipschitz. The value function of

Minimize J(yt,x,uT ) over u(·) ∈ L1(t, T ;U)

where ẙs = f(ys, u(s)) and yt = x

is the unique viscosity solution of (HJB) with
Hamiltonian H(x, p) = supu∈U −p(∇xf(x, u)).
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CBB spaces

Curvature Bounded Below in the sense of Alexandrov. In these spaces,

d2(x, γt) ⩾ (1− t)d2(x, γ0) + td2(x, γ1)− t(1− t)d2(γ0, γ1).
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Results in the Wasserstein space

Consider the control problem

Minimize J(µt,ν,uT ) over u(·) ∈ L1(t, T ;U),

where ∂sµs + div (f [µs, u(s)]#µs) = 0 for s ∈ (t, T ), µt = ν.

Well-posedness results for continuity inclusions in [BF21, BF23].

Theorem – Characterization Assume f to be locally Lipschitz with linear growth,
have convex f [µ,U ], and J : P2(Ω) → R to be . Then

V (t, ν) := inf
u(·)∈L1(t,T ;U)

J(µt,ν,uT )

is the of (HJ) with H(µ, p) := supu∈U −p(f [µ, u]#µ).
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Results in the Wasserstein space

Consider the control problem

Minimize J(µt,ν,uT ) over u(·) ∈ L1(t, T ;U),

where ∂sµs + div (f [µs, u(s)]#µs) = 0 for s ∈ (t, T ), µt = ν.

Well-posedness results for continuity inclusions in [BF21, BF23].

Theorem – Characterization [AH24] Assume f to be locally Lipschitz with linear
growth, have convex f [µ,U ], weakly continuous and J : P2(Ω) → R∪{+∞} to be
weakly lsc. Then

V (t, ν) := inf
u(·)∈L1(t,T ;U)

J(µt,ν,uT )

is the minimal supersolution of (HJ) with H(µ, p) := supu∈U −p(f [µ, u]#µ).
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Another idea: Lions’ lift

. Generalization of ideas from P2, mistakes are mine and not imputable to Lions or collaborators. .

Assume Ω is isometric to the quotient of a
Hilbert space E by the action of a group of
isometries. For any φ : Ω → R, define its lift

Φ(v) := φ([v]).

Define φ to be differentiable at x if Φ is
Fréchet-differentiable in E at some point of
the equivalence class x.

• test functions ∼ subset of C1(E)

• stability
• comparison? Holds in P2(Ω) [BL24].
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Thank you!
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