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Definitions

Let
e [0,7] x © an underlying space,
e measurable controls u € Uy 7},
u(+) : [0,T] = U C R" compact,
e A notion of ODE satisfying
{ygv”“’“ =zreQ,
T = Fly ™ (),

e A terminal cost J : Q2 — R.

Given z € Q, find u(-) such that 0
Tr™) < Tr™) Vo € Uy, timez T
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Intuition of the Hamilton-Jacobi approach

Let the value function V' : [0, 7] x €+ R be given by V (¢, z) := inf, (e, T (™).
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Let the value function V' : [0, 7] x €+ R be given by V (¢, z) := inf, (e, T (™).
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Intuition of the Hamilton-Jacobi approach

Let the value function V' : [0, 7] x €+ R be given by V (¢, z) := inf, (e, T (™).

Bellman's principle  For all h € [0,T —¢t], V(t,2) = inf,()eyy, ., V(E+ D yffh“) ]

If u(-) is optimal, then for all h € [0,T —t],

V(ta) = T =V (t+ by

: 1\
e ()

— o0 V(t,x) + SEB —(VV(t,z), f(z,u)) =0. (HIB)
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Viscosity solutions

Consider more generally the HJ equation in @ =)0, T[x

— 0V (t,x)+ H (z,VV(t,x)) =0, V(T,z) = J(z). (HJ)
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Viscosity solutions

Consider more generally the HJ equation in @ =)0, T[x

— 0V (t,x)+ H (z,VV(t,x)) =0, V(T,xz) = J(x). (HJ)
Since solutions are not everywhere differentiable, but weak solutions are not unique,

A map v : Q +— R is a sub/supersolution of (HJ) if +v is u.s.c, and for all p € C* (Q,R)
such that 4+(v — ¢) is maximized at (t,z) € Q,

+ (—0wp(t,x) + H (xz,V(t,z))) < 0.
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Viscosity solutions

Consider more generally the HJ equation in @ =)0, T[x
— 0V (t,x)+ H (z,VV(t,x)) =0, V(T,xz) = J(x). (HJ)
Since solutions are not everywhere differentiable, but weak solutions are not unique,

A map v : Q +— R is a sub/supersolution of (HJ) if +v is u.s.c, and for all p € C* (Q,R)
such that 4+(v — ¢) is maximized at (t,z) € Q,

+ (—0wp(t,x) + H (xz,V(t,z))) < 0.

A mapwv : Q — Ris a solution if it is a subsolution, a supersolution, and if (T, z) = J ().

Another definition by super/subdifferentials.
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Definitions

Let Z25(R%) be the space of nonnegative Borel probability measures with finite second moment.

ne 2@, [dnto)=n [

Yy T

@2y (1, v) = in / (2, y)dn(z,y) dn(z,-) = v
(z,y)€(R9)2
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Moving (1/2): the exponential

Let (u,v) € Po(RY)2. Each n € T'y(u,v) parametrizes a geodesic by
pe = ((1 = )a + tmy) #1
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Moving (1/2): the exponential

Let (u,v) € Po(RY)2. Each n € T'y(u,v) parametrizes a geodesic by
pe = ((1 = ) + tmy) #n = (72 + L (7y — 7)) #n = (T2 + tmy) # (72, 7y — 72)F0] -

Define 2,,(TR?) as the set of initial velocities ¢ € 2(TR?)
such that m,#£ = u, and

® e@,u,o(TRd) = {(ﬂ—za'ﬂy - Wr)#n ‘ ne I, (,ua QQ(Rd))}'
o exp,(t-&) = (m +tm)#E  VE€ P, (TRY),

° WN (f?g) = limt\o dW(eXpu(t'?ueXpu(tf))'

—W,
o T,P5R%) := P, ,(TRI) "
o ' P,(TRY) > T),P5(TRY) a partially defined projection. -

Now ¢ — exp,,(t - €) is a measure analogue of t — z + tv.
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Moving (2/2): the continuity equation

We follow solutions (,u?”’“)se[t’;p] of the controlled nonlocal continuity equation (see [AGS05])

pe=v,  Osps+ div (f(-, ps, u(s))ps) = 0. (CE)
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We follow solutions (,u?”’“)se[t’;p] of the controlled nonlocal continuity equation (see [AGS05])
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Solution of (CE) Assume that f : R? x 925(R%) x U — TR? is Lip. and bounded.
ps = SEV A, where S{""(z) =z and 9LV = f (SL"Y, g, u(s)) .

~
=
@\
—
-
= S
—
= N
—
—
) S s s
6\\\\"_' —  TEEEESS G
/'*N —_— e et et et ep ey S
P SRS T L L, e, e RS —,
\‘t:\‘_,__-v/'/'
E——

Averil Prost Quadratic is the new smooth 9/24



Wasserstein
0000e0

Issue 1: Non-smoothness of the distance

Two conflicting notions of straight lines:

e convex combinations ] = (1 — t)ug + tuu; (vertical displacement)

Averil Prost Quadratic is the new smooth 10/24



Wasserstein
0000e0

Issue 1: Non-smoothness of the distance

Two conflicting notions of straight lines:
e convex combinations ] = (1 — t)ug + tuu; (vertical displacement)
o geodesics jiy = exp,,(t - &) for £ € P, o(TR?) (horizontal displacement)

Averil Prost Quadratic is the new smooth 10 /24



Wasserstein
0000e0

Issue 1: Non-smoothness of the distance

Two conflicting notions of straight lines:

e convex combinations ] = (1 — t)ug + tuu; (vertical displacement)

o geodesics jiy = exp,,(t - &) for £ € P, o(TR?) (horizontal displacement)
The squared distance d},(-, o) is

e convex along (Mz)te[o,l}:

Averil Prost Quadratic is the new smooth 10 /24



Wasserstein

0000e0

Issue 1: Non-smoothness of the distance

Two conflicting notions of straight lines:

e convex combinations ] = (1 — t)ug + tuu; (vertical displacement)

o geodesics jiy = exp,,(t - &) for £ € P, o(TR?) (horizontal displacement)
The squared distance d},(-, o) is

e convex along (ul)te[o’l},
e semiconcave along (fit)e[o,1] (see [AGSO05]):

Byljir,0) > (1~ )y (fio. o) + tdy(jir, o)
— 11— )y (o, 1)

s
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Issue 1: Non-smoothness of the distance

Two conflicting notions of straight lines:

e convex combinations ] = (1 — t)ug + tuu; (vertical displacement)

o geodesics jiy = exp,,(t - &) for £ € P, o(TR?) (horizontal displacement)
The squared distance d},(-, o) is

e convex along (ul)te[o’l},
e semiconcave along (fit)e[o,1] (see [AGSO05]):
@y (e, @) > (1~ )y fio, @) + tay (v, o)
— t(1 — 1)y (o, i)

Hence directionally differentiable along ¢ — exp,,(t - )! s /
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Let p, == (1 — #) 5o + #5,1. On one hand,
dW ((50,,un) =1 Vn} 1.

narrow

But 1, — 8o, since for ¢ € Cy(R%,R),

(ot = (1= ) #(0)+ 00

— ¢(0).

n—oo
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Issue 2: lack of local compactness

Let p, == (1 — #) 5o + #5,1. On one hand,
dW ((50,un) =1 Vn} 1.

narrow

But 1, — 8o, since for ¢ € Cy(R%, R),

(ot = (1= ) #(0)+ 00

— ¢(0).

n—oo

Without bounds on the support,
P5(R%) is not locally compact.
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A glimpse at the literature

e Lions theory For each 1 € 225(R?), there exists X € L2([0,1]%, R?) such that y = X#L.
» very powerful results (see [PW18])
» such an X is absolutely not unique (all rearrangements have the same law)
» initiates research on rearrangement-invariant maps
» one could hope for a more intrinsic definition.
e Subdifferential theory Define appropriately the sub/superdifferential.
» several definitions in use: with velocities ([AGS05]) or with elements of L2(R% R?) in
a strict ([GT19]) or large way ([JMQ20])
» under active contruction.

e Test function theory Understand how to choose and use test functions.
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A glimpse at the literature

e Lions theory For each 1 € 225(R?), there exists X € L2([0,1]%, R?) such that y = X#L.
» very powerful results (see [PW18])
» such an X is absolutely not unique (all rearrangements have the same law)
» initiates research on rearrangement-invariant maps
» one could hope for a more intrinsic definition.
e Subdifferential theory Define appropriately the sub/superdifferential.
» several definitions in use: with velocities ([AGS05]) or with elements of L2(R% R?) in
a strict ([GT19]) or large way ([JMQ20])
» under active contruction.
e Test function theory Understand how to choose and use test functions.
» elements in this direction in [JMQ22], assuming differentiability
» setting of this presentation, in the line of [JJZ] and [Jer22].
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Let ¢ € CL(R%,R). Then Vb € TR?, (Vo(x),b) = lim, elatit)—plz),

Let ¢ : Z5(R?) — R be locally Lipschitz and semiconcave/semiconvex. lts differential is

Dup: TP2(RY) =R, Dypl(6) = lim o (exp 'f)) — ),

D, is Lipschitz for W, and positively homogeneous. Let

T := U {u} x {W, — Lipschitz and positively homogeneous maps} ,
pEFP2(RE)
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Using directional derivatives

Let ¢ € CL(R%,R). Then Vb € TR?, (Vo(x),b) = lim, elatit)—plz),

Let ¢ : Z5(R?) — R be locally Lipschitz and semiconcave/semiconvex. lts differential is

Dup: TP2(RY) =R, Dypl(6) = lim o (exp 'f)) — ),

D, is Lipschitz for W, and positively homogeneous. Let

T := U {u} x {W, — Lipschitz and positively homogeneous maps} ,
pEP(RY)
H:Tw— R, H(p,p) =sup —p (7 o f(-, p,u)#up) v.s. sup — (p, f(x,u))
uel uelU
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The choice of test functions

Define T == {(t, u) = ¥(t)+o(u) | ¥ € C1([0,T],R), ¢ locally Lip and semiconcave}.

Averil Prost Quadratic is the new smooth 15 /24



Control problems / ei Viscosity

[eJe]e] ]

The choice of test functions

Define T == {(t, u) = ¥(t)+o(u) | ¥ € C1([0,T],R), ¢ locally Lip and semiconcave}.
A map v : [0,T] x P(RY) = R is a sub/supersolution of (HJ) if +-v is u.s.c, and for all
¢ € Ty such that +(v — ¢) is maximized at (¢, ) € [0, T[x P2(R%),

+ (=0kp(t, 1) + H (4, Dpsp(t, 1)) < 0.

A map v : [0,T] x Z(R?) — R is a solution if it is a subsolution, a supersolution, and if
o(T,x) = J(z).
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The choice of test functions

Define T == {(t, u) = ¥(t)+o(u) | ¥ € C1([0,T],R), ¢ locally Lip and semiconcave}.
A map v : [0,T] x P(RY) = R is a sub/supersolution of (HJ) if +-v is u.s.c, and for all
¢ € Ty such that +(v — ¢) is maximized at (¢, ) € [0, T[x P2(R%),

+ (=0kp(t, 1) + H (4, Dpsp(t, 1)) < 0.

A map v : [0,T] x Z(R?) — R is a solution if it is a subsolution, a supersolution, and if
o(T,x) = J(z).

> Issue 1 solved! N
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Walking through the comparison principle (structure of [JMQ20])

Let (v, w) be Lip. and bounded sub/supersolution of (HJ) with w(T,-) > v(T,-). Aim: w > v.
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Let (v, w) be Lip. and bounded sub/supersolution of (HJ) with w(T,-) > v(T,-). Aim: w > v.

1. Assume the opposite and make one of v, w "strict".

d?(zy,2w)

2. Introduce a variable doubling function ®(z,, zy) = w(zw) — v(2y) + —2
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Let (v, w) be Lip. and bounded sub/supersolution of (HJ) with w(T,-) > v(T,-). Aim: w > v.

1. Assume the opposite and make one of v, w "strict".

2. Introduce a variable doubling function ®(z,, zy) == w(zy) — v(zy) + M.
3. Consider the minimum (2, z) of ®. At this point,
2( % 2(, %
w(+) — [U(z:;) - d('z)} minimized,  v(-) — |w(z%) + d(;zw) maximized.

Averil Prost Quadratic is the new smooth 17 /24



Comparison
Oe0000

Walking through the comparison principle (structure of [JMQ20])

Let (v, w) be Lip. and bounded sub/supersolution of (HJ) with w(T,-) > v(T,-). Aim: w > v.

1. Assume the opposite and make one of v, w "strict".

2. Introduce a variable doubling function ®(z,, zy) == w(zy) — v(zy) + M.
3. Consider the minimum (2, z) of ®. At this point,
2( % 2(, %
w(+) — [U(z:;) - d(z)} minimized,  v(-) — |w(z%) + d(;zw) maximized.

4. Since the terms in brackets are test functions, apply the definition of viscosity solution to
obtain a contradiction for & small enough.
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Walking through the comparison principle (structure of [JMQ20])

Let (v, w) be Lip. and bounded sub/supersolution of (HJ) with w(T,-) > v(T,-). Aim: w > v.

1. Assume the opposite and make one of v, w "strict".

2. Introduce a variable doubling function ®(z,, zy) == w(zy) — v(zy) + M.
3. Consider the minimum (2, z) of ®. At this point,
2( % 2(, %
w(+) — [U(z:;) - d(z)} minimized,  v(-) — |w(z%) + d(;w)} maximized.

4. Since the terms in brackets are test functions, apply the definition of viscosity solution to
obtain a contradiction for & small enough.

[ Step 3. implies to minimize a |.s.c function, but no local compactness. ]
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The smooth Ekeland principle

Let (X,d) be a complete metric space.

Gauge-type functions  Any lower semicontinuous p : X x X — [0,00] satisfying
p(z,x) =0 for all x € X, and Ve > 0, 3n > 0 such that p(z,y) < n implies d(z,y) < €.
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Gauge-type functions  Any lower semicontinuous p : X x X — [0,00] satisfying
p(z,x) =0 for all x € X, and Ve > 0, 3n > 0 such that p(z,y) < n implies d(z,y) < €.

Theorem — Borwein-Preiss [BP87] Let f: X — R U {oo} be proper, Isc and lower
bounded. Let p be gauge-type, (6;); C R}, and x¢p € X such that f(xg) < infx f +¢.
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Let (X,d) be a complete metric space.

Gauge-type functions  Any lower semicontinuous p : X x X — [0,00] satisfying
p(z,x) =0 for all x € X, and Ve > 0, 3n > 0 such that p(z,y) < n implies d(z,y) < €.

Theorem — Borwein-Preiss [BP87] Let f: X — R U {oo} be proper, Isc and lower
bounded. Let p be gauge-type, (6;); C R}, and x¢p € X such that f(xg) < infx f +¢.
Then there exist y € X and a sequence (z;)7°, C X such that

plxo,y) <e/do and  plzi,y) < e/(2'0) (1a)
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The smooth Ekeland principle

Let (X,d) be a complete metric space.

Gauge-type functions  Any lower semicontinuous p : X x X — [0,00] satisfying
p(z,x) =0 for all x € X, and Ve > 0, 3n > 0 such that p(z,y) < n implies d(z,y) < €.

Theorem — Borwein-Preiss [BP87] Let f: X — R U {oo} be proper, Isc and lower
bounded. Let p be gauge-type, (6;); C R}, and x¢p € X such that f(xg) < infx f +¢.
Then there exist y € X and a sequence (z;)7°, C X such that

p(zo,y) <e/dg and  p(as,y) < e/(2°60) (1a)
f(y) + 220 0ip(y, z:) < f(wo) (1b)
(1c)
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The smooth Ekeland principle

Let (X,d) be a complete metric space.

Gauge-type functions  Any lower semicontinuous p : X x X — [0,00] satisfying
p(z,x) =0 for all x € X, and Ve > 0, 3n > 0 such that p(z,y) < n implies d(z,y) < €.

Theorem — Borwein-Preiss [BP87] Let f: X — R U {oo} be proper, Isc and lower
bounded. Let p be gauge-type, (6;); C R}, and x¢p € X such that f(xg) < infx f +¢.
Then there exist y € X and a sequence (z;)7°, C X such that

p(zo,y) <e/dg and  p(as,y) < e/(2°60) (1a)
f(y) + 220 0ip(y, z:) < f(wo) (1b)
f(@) + 520 dip(z, 25) > f(y) + 220 dip(y,xi) Yo e X\{y}.  (Ic)
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[[lustration of Borwein-Preiss

2.00
I 1
17 ! > io 0ip(-, i)
1 1.5 4
J 4200 0ip(s, i)

1.50
1.2 1.0
1.00

0.5
0.7:
0.50

0.0 4
0.23
0.00 0.

-4 -2 0 2 4 6 8 —4 -2 0 2 4 6 8

Figure: Iterative construction with f(z) = (1 + |z|)~%, &; = 0.01/(1 + )2, p(z,y) = |z — y|*.
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Figure: Iterative construction with f(z) = (1 + |z|)~%, &; = 0.01/(1 + )2, p(z,y) = |z — y|*.
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The advantage of Borwein-Preiss

Borwein-Preiss: Vé > 0, existence of minimum of a perturbed function ®(-,-) + as(-,-).
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Borwein-Preiss: Vé > 0, existence of minimum of a perturbed function ®(-,-) + as(-,-).

e For each ¢ > 0, obtain a minimum point (2} 5, 23, 5) of ®(,-) + as(-, ).

dQ(Z:;,(S? )

w(+) = [v(zys) — — ag(zy,+)| minimized.
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The advantage of Borwein-Preiss

Borwein-Preiss: Vé > 0, existence of minimum of a perturbed function ®(-,-) + as(-,-).

e For each ¢ > 0, obtain a minimum point (2} 5, 23, 5) of ®(,-) + as(-, ).

dQ(Z:;ﬁ? )

—ags(z) 5,+)| minimized.
6 )

w(-) = |v(zy6) =

e Key idea: build the space of test functions such that the term in bracket is in 7_.
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Borwein-Preiss: Vé > 0, existence of minimum of a perturbed function ®(-,-) + as(-,-).

e For each ¢ > 0, obtain a minimum point (2} 5, 23, 5) of ®(,-) + as(-, ).

dQ(Z:;ﬁ’ )

w(+) = [v(zys) — — ag(zy,+)| minimized.

e Key idea: build the space of test functions such that the term in bracket is in 7_.

T:l: =S {Cl([O,T],R)j: 21‘20 5id12/\;('70'i) ‘ 52 > 0, Zi)(} 52 < 00, diam ({Uz}) < OO}
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The advantage of Borwein-Preiss

Borwein-Preiss: Vé > 0, existence of minimum of a perturbed function ®(-,-) + as(-,-).

e For each ¢ > 0, obtain a minimum point (2} 5, 23, 5) of ®(,-) + as(-, ).

dQ(Z:;ﬁ’ )

w(+) = [v(zys) — — ag(zy,+)| minimized.

e Key idea: build the space of test functions such that the term in bracket is in 7_.

T:l: =S {Cl([O,T],R)j: 21‘20 5id12/\;('70'i) ‘ 52 > 0, Zi)(} 52 < 00, diam ({Uz}) < OO}

e Apply the definition of viscosity, some estimate machinery to get rid of the perturbation.
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Context of the idea

e Long history of Ekeland principles in viscosity (Crandall & Lions [CL85] for nonemptiness
of subdifferential)

e Jimenez, Maringonda and Quincampoix [MQ18, JMQ20] use the original Ekeland principle.

» Smooth perturbations are not allowed
» Finite sequences are allowed (lightens the presentation)
» To account for the perturbation, introduction of d—viscosity:

+ (=0 + H (1, Dpp) —6C) <0 Vo s.t. £ (v — ) reaches a 6 — max,

where C' > 0 is a constant related to the speed of the propagation of information.
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Context of the idea

e Long history of Ekeland principles in viscosity (Crandall & Lions [CL85] for nonemptiness
of subdifferential)

e Jimenez, Maringonda and Quincampoix [MQ18, JMQ20] use the original Ekeland principle.

» Smooth perturbations are not allowed
» Finite sequences are allowed (lightens the presentation)
» To account for the perturbation, introduction of d—viscosity:

+ (=0 + H (1, Dpp) —6C) <0 Vo s.t. £ (v — ) reaches a 6 — max,

where C' > 0 is a constant related to the speed of the propagation of information.

e The "swallowing trick" is a simple idea, but requires a large enough test function set.

Averil Prost Quadratic is the new smooth 21 /24
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What is done

Theorem — Comparison principle ([JPZ23]) Assume f : R x Z25(R%) x U +» TRY
is Lip. and bounded. Let v, w be Lipschitz and bounded sub/supersolutions of (HJ). Then

i t’ N t’ Z inf T7 - T7 .
(t,,u)G[O,liI“}XWQ(Rd)[w( ) — v(t, )] MG,IWI;(Rd)[w( 1) — (T, )]
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What is done

Theorem — Comparison principle ([JPZ23]) Assume f : R x Z25(R%) x U +» TRY
is Lip. and bounded. Let v, w be Lipschitz and bounded sub/supersolutions of (HJ). Then

i t’ N t’ Z inf T7 - T7 .
(t,,u)G[O,liI“}XWQ(Rd)[w( ) — v(t, )] MG,IWI;(Rd)[w( 1) — (T, )]

Theorem  Assume J : Z5(R%) — R and f are Lip. and bounded. The value function
V is the unique Lipschitz and bounded viscosity solution of (HJ).
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Perspectives on this topic

Improving the results:
e weakening the regularity?
e another argument by weakening the topology on measures (ongoing work of Othmane)
e clements of comparison with the semidifferential notions (some results)
Ideas for the future:
e generalization to other spaces than R?
e using Measure Differential Equations ([Pic19, CCDMP21])
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