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Control problems Wasserstein Viscosity Comparison Results

Definitions

Let
• [0, T ]× Ω an underlying space,

• measurable controls u ∈ U[0,T ],
u(·) : [0, T ] 7→ U ⊂ Rκ compact,

• A notion of ODE satisfying{
y0,x,u0 = x ∈ Ω,
d
dty

0,x,u
t = f(y0,x,ut , u(t)),

• A terminal cost J : Ω 7→ R.

Given x ∈ Ω, find u(·) such that

J (y0,x,uT ) ⩽ J (y0,x,vT ) ∀v ∈ U[0,T ].
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Control problems Wasserstein Viscosity Comparison Results

Intuition of the Hamilton-Jacobi approach

Let the value function V : [0, T ]× Ω 7→ R be given by V (t, x) := infu(·)∈U[t,T ]
J (yt,x,uT ).

Bellman’s principle For all h ∈ [0, T − t], V (t, x) = infu(·)∈U[t,t+h]
V (t+ h, yt,x,ut+h ).

If u(·) is optimal, then for all h ∈ [0, T − t],

V (t, x) = J (yt,x,uT ) = V
(
t+ h, yt,x,ut+h

)

inf
b∈f(x,U)

(
∂tV ∇V

)(1
b

)
= 0

− ∂tV (t, x) + sup
u∈U

−⟨∇V (t, x), f(x, u)⟩ = 0. (HJB)
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Control problems Wasserstein Viscosity Comparison Results

Viscosity solutions

Consider more generally the HJ equation in Q :=]0, T [×Ω

− ∂tV (t, x) +H (x,∇V (t, x)) = 0, V (T, x) = J (x). (HJ)

Since solutions are not everywhere differentiable, but weak solutions are not unique,

A map v : Q 7→ R is a sub/supersolution of (HJ) if +_v is u.s.c, and for all φ ∈ C1 (Q,R)
such that +_(v − φ) is maximized at (t, x) ∈ Q,

+_ (−∂tφ(t, x) +H (x,∇φ(t, x))) ⩽ 0.

A map v : Q 7→ R is a solution if it is a subsolution, a supersolution, and if v(T, x) = J (x).

Another definition by super/subdifferentials.
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Control problems Wasserstein Viscosity Comparison Results

Definitions

Let P2(Rd) be the space of nonnegative Borel probability measures with finite second moment.

d2W (µ, ν) := inf

{∫
(x,y)∈(Rd)2

d2(x, y)dη(x, y)

∣∣∣∣∣ η ∈ P((Rd)2),

∫
y
dη(·, y) = µ,

∫
x
dη(x, ·) = ν

}

Pushforward of measures Let g : Rd 7→ Rd be a measurable map, and µ ∈ P(Rd).
The pushforward g#µ ∈ P(Rd) is given by [g#µ](A) = µ

(
g−1(A)

)
for all A ∈ BRd .

+ =
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Control problems Wasserstein Viscosity Comparison Results

Moving (1/2): the exponential

Let (µ, ν) ∈ P2(Rd)2. Each η ∈ Γo(µ, ν) parametrizes a geodesic by

µt := ((1− t)πx + tπy)#η

= (πx + t (πy − πx))#η = (πx + tπv)# [(πx, πy − πx)#η] .

Define Pµ(TRd) as the set of initial velocities ξ ∈ P(TRd)
such that πx#ξ = µ, and

• Pµ,o(TRd) :=
{
(πx, πy − πx)#η

∣∣ η ∈ Γo

(
µ,P2(Rd)

)}
,

• expµ(t · ξ) := (πx + tπv)#ξ ∀ξ ∈ Pµ(TRd),

• Wµ

(
ξ, ξ

)
:= limt↘0

dW(expµ(t·ξ),expµ(t·ξ))
t ,

• TµP2(Rd) := Pµ,o(TRd)
Wµ

,
• πµ : Pµ(TRd) 7→ TµP2(TRd) a partially defined projection.

Now t 7→ expµ(t · ξ) is a measure analogue of t 7→ x+ tv.
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Control problems Wasserstein Viscosity Comparison Results

Moving (2/2): the continuity equation

We follow solutions (µt,ν,us )s∈[t,T ] of the controlled nonlocal continuity equation (see [AGS05])

µt = ν, ∂sµs + div (f(·, µs, u(s))µs) = 0. (CE)

Solution of (CE) Assume that f : Rd × P2(Rd)× U 7→ TRd is Lip. and bounded.

µs = St,ν,u
s #ν, where St,ν,u

t (x) = x and ∂tS
t,ν,u
s = f

(
St,ν,u
s , µs, u(s)

)
.
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Control problems Wasserstein Viscosity Comparison Results

Issue 1: Non-smoothness of the distance

Two conflicting notions of straight lines:
• convex combinations µ↑t = (1− t)µ0 + tµ1 (vertical displacement)

• geodesics µ⃗t = expµ(t · ξ) for ξ ∈ Pµ,o(TRd) (horizontal displacement)

The squared distance d2W(·, σ) is

• convex along (µ↑t )t∈[0,1],
• semiconcave along (µ⃗t)t∈[0,1] (see [AGS05]):

d2W(µ⃗t, σ) ⩾ (1− t)d2W(µ⃗0, σ) + td2W(µ⃗1, σ)

− t(1− t)d2W (µ⃗0, µ⃗1) .

Hence directionally differentiable along t 7→ expµ(t · ξ)!
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Control problems Wasserstein Viscosity Comparison Results

Issue 2: lack of local compactness

Let µn :=
(
1− 1

n2

)
δ0 +

1
n2 δn.

On one hand,

dW (δ0, µn) = 1 ∀n ⩾ 1.

But µn
narrow−→
n→∞

δ0, since for φ ∈ Cb(Rd,R),

⟨φ, µn⟩ =
(
1− 1

n2

)
φ(0) +

1

n2
φ(n)

−→
n→∞

φ(0).

Without bounds on the support,
P2(Rd) is not locally compact.
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Control problems Wasserstein Viscosity Comparison Results

A glimpse at the literature

• Lions theory For each µ ∈ P2(Rd), there exists X ∈ L2([0, 1]d,Rd) such that µ = X#L.

▶ very powerful results (see [PW18])
▶ such an X is absolutely not unique (all rearrangements have the same law)
▶ initiates research on rearrangement-invariant maps
▶ one could hope for a more intrinsic definition.

• Subdifferential theory Define appropriately the sub/superdifferential.
▶ several definitions in use: with velocities ([AGS05]) or with elements of L2

µ(Rd,Rd) in
a strict ([GT19]) or large way ([JMQ20])

▶ under active contruction.
• Test function theory Understand how to choose and use test functions.

▶ elements in this direction in [JMQ22], assuming differentiability
▶ setting of this presentation, in the line of [JJZ] and [Jer22].
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Control problems Wasserstein Viscosity Comparison Results

Using directional derivatives

Let φ ∈ C1(Rd,R). Then ∀b ∈ TRd, ⟨∇φ(x), b⟩ = lim
t↘0

φ(x+tb)−φ(x)
t .

Let φ : P2(Rd) 7→ R be locally Lipschitz and semiconcave/semiconvex. Its differential is

Dµφ : TµP2(Rd) 7→ R, Dµφ(ξ) := lim
t↘0

φ
(
expµ(t · ξ)

)
− φ(µ)

t
.

Dµφ is Lipschitz for Wµ and positively homogeneous. Let

T :=
⋃

µ∈P2(Rd)

{µ} × {Wµ − Lipschitz and positively homogeneous maps} ,

H : T 7→ R, H(µ, p) := sup
u∈U

−p (πµ ◦ f(·, µ, u)#µ) v.s. sup
u∈U

−⟨p, f(x, u)⟩
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expµ(t · ξ)

)
− φ(µ)

t
.

Dµφ is Lipschitz for Wµ and positively homogeneous. Let

T :=
⋃

µ∈P2(Rd)

{µ} × {Wµ − Lipschitz and positively homogeneous maps} ,

H : T 7→ R, H(µ, p) := sup
u∈U

−p (πµ ◦ f(·, µ, u)#µ) v.s. sup
u∈U

−⟨p, f(x, u)⟩
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The choice of test functions

Define T+– :=
{
(t, µ) 7→ ψ(t)+_φ(µ)

∣∣ ψ ∈ C1([0, T ],R), φ locally Lip and semiconcave
}
.

A map v : [0, T ]× P2(Rd) 7→ R is a sub/supersolution of (HJ) if +_v is u.s.c, and for all
φ ∈ T+– such that +_(v − φ) is maximized at (t, µ) ∈ [0, T [×P2(Rd),

+_ (−∂tφ(t, µ) +H (µ,Dµφ(t, µ))) ⩽ 0.

A map v : [0, T ]×P2(Rd) 7→ R is a solution if it is a subsolution, a supersolution, and if
v(T, x) = J (x).

▷ Issue 1 solved! ◁
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Control problems Wasserstein Viscosity Comparison Results

Walking through the comparison principle (structure of [JMQ20])

Let (v, w) be Lip. and bounded sub/supersolution of (HJ) with w(T, ·) ⩾ v(T, ·). Aim: w ⩾ v.

1. Assume the opposite and make one of v, w "strict".

2. Introduce a variable doubling function Φ(zv, zw) := w(zw)− v(zv) +
d2(zv ,zw)

ε .

3. Consider the minimum (z∗v , z
∗
w) of Φ. At this point,

w(·)−
[
v(z∗v)−

d2(z∗v , ·)
ε

]
minimized, v(·)−

[
w(z∗w) +

d2(·, z∗w)
ε

]
maximized.

4. Since the terms in brackets are test functions, apply the definition of viscosity solution to
obtain a contradiction for ε small enough.

Step 3. implies to minimize a l.s.c function, but no local compactness.
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Control problems Wasserstein Viscosity Comparison Results

The smooth Ekeland principle

Let (X, d) be a complete metric space.

Gauge-type functions Any lower semicontinuous ρ : X × X 7→ [0,∞] satisfying
ρ(x, x) = 0 for all x ∈ X, and ∀ε > 0, ∃η > 0 such that ρ(x, y) ⩽ η implies d(x, y) ⩽ ε.

Theorem – Borwein-Preiss [BP87] Let f : X 7→ R ∪ {∞} be proper, lsc and lower
bounded.

Let ρ be gauge-type, (δi)i ⊂ R+
∗ , and x0 ∈ X such that f(x0) ⩽ infX f + ε.

Then there exist y ∈ X and a sequence (xi)
∞
i=0 ⊂ X such that

ρ(x0, y) ⩽ ε/δ0 and ρ(xi, y) ⩽ ε/(2iδ0)

f(y) + Σ∞
i=0 δiρ(y, xi) ⩽ f(x0)

f(x) + Σ∞
i=0 δiρ(x, xi) > f(y) + Σ∞

i=0 δiρ(y, xi) ∀x ∈ X \ {y}.

(1a)
(1b)
(1c)
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Control problems Wasserstein Viscosity Comparison Results

Illustration of Borwein-Preiss

Figure: Iterative construction with f(x) = (1 + |x|)−1, δi = 0.01/(1 + i)2, ρ(x, y) = |x− y|2.
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The advantage of Borwein-Preiss

Borwein-Preiss: ∀δ > 0, existence of minimum of a perturbed function Φ(·, ·) + αδ(·, ·).

• For each δ > 0, obtain a minimum point (z∗v,δ, z
∗
w,δ) of Φ(·, ·) + αδ(·, ·).

w(·)−
[
v(z∗v,δ)−

d2(z∗v,δ, ·)
ε

− αδ(z
∗
v,δ, ·)

]
minimized.

• Key idea: build the space of test functions such that the term in bracket is in T−.

T+– :=
{
C1([0, T ],R)+_

∑
i⩾0 δid

2
W(·, σi)

∣∣ δi ⩾ 0,
∑

i⩾0 δi <∞, diam ({σi}) <∞.
}

• Apply the definition of viscosity, some estimate machinery to get rid of the perturbation.
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Control problems Wasserstein Viscosity Comparison Results

Context of the idea

• Long history of Ekeland principles in viscosity (Crandall & Lions [CL85] for nonemptiness
of subdifferential)

• Jimenez, Maringonda and Quincampoix [MQ18, JMQ20] use the original Ekeland principle.
▶ Smooth perturbations are not allowed
▶ Finite sequences are allowed (lightens the presentation)
▶ To account for the perturbation, introduction of δ−viscosity:

± (−∂tφ+H (µ,Dµφ)− δC) ⩽ 0 ∀φ s.t. ± (v − φ) reaches a δ − max,

where C > 0 is a constant related to the speed of the propagation of information.
• The "swallowing trick" is a simple idea, but requires a large enough test function set.
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What is done

Theorem – Comparison principle ([JPZ23]) Assume f : Rd×P2(Rd)×U 7→ TRd

is Lip. and bounded. Let v, w be Lipschitz and bounded sub/supersolutions of (HJ). Then

inf
(t,µ)∈[0,T ]×P2(Rd)

[w(t, µ)− v(t, µ)] ⩾ inf
µ∈P2(Rd)

[w(T, µ)− v(T, µ)] .

Theorem Assume J : P2(Rd) 7→ R and f are Lip. and bounded. The value function
V is the unique Lipschitz and bounded viscosity solution of (HJ).
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Perspectives on this topic

Improving the results:
• weakening the regularity?

• another argument by weakening the topology on measures (ongoing work of Othmane)
• elements of comparison with the semidifferential notions (some results)

Ideas for the future:
• generalization to other spaces than Rd

• using Measure Differential Equations ([Pic19, CCDMP21])
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Thank you!
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