A relaxation theorem in CAT(0) spaces

anr

Averil Prost, Hasnaa Zidani

LMI, INSA Rouen Normandie. Please contact us at averil.prost@insa-rouen.fr.

MOTIVATION

NTROL PROBLEMS are optimization problems set on the trajectories of a dynamical system. Among them, a Mayer problem writes as Minimize $\mathfrak{J}\left(y_T^{0,x,u}\right)$ over all controls $u(\cdot) \in L^1(0,T;U)$,

where \mathfrak{J} is a given terminal cost, U a compact set of controls, and the trajectory $(y_s^{t,x,u})_{s \in [t,T]}$ is the solution of the controlled dynamical system $\dot{y}_s = f(y_s, u(s))$ issued from x at time t.

Our aim is to study such problems in the so-called CAT(0) spaces, i.e. metric geodesic spaces with a 2-convex squared distance. This poster focuses on the *existence* of an optimal control, which is usually obtained from compactness of the set of trajectories issued from a given point. In \mathbb{R}^d , this set is closed if $f(\cdot, U)$ is convex for each $x \in \Omega$. What would be a proper generalisation of this assumption in a CAT(0) space Ω ?

FORMULATION

THE FIRST class of ODEs to be defined in metric spaces is the family of gradient flows. In a CAT(0) space Ω , Alexander, Kapovitch and Petrunin [AKP22] were able to show that any Lipschitz and semiconcave function $F: \Omega \rightarrow \mathbb{R}$ generates a semigroup $(h,x) \mapsto \operatorname{GF}_F(h,x)$ whose right derivative at all time coincides with the metric gradient of F.

To define a general ODE, consider a "potential dynamic" $F : \Omega \times U \to \operatorname{Lip}_{conv}(\Omega; \mathbb{R})$ valued in convex and Lipschitz functions. The ODE formally writes as

> (2) $\dot{y}_s = \nabla_{\gamma_s}(-F(\gamma_s, u(s))).$

Definition. A curve $(y_s)_{s \in [0,T]}$ is a solution of (2) if it is absolutely continuous, and for almost any $s \in$ [0,T], there holds

 $\lim_{h \searrow 0} \frac{d\left(y_{s+h}, \operatorname{GF}_{-F(y_s, u(s))}(h, y_s)\right)}{h} = 0.$

This formulation is inspired from the theory of *mutational* equations, and uses the results of existence, uniqueness and estimates for the solutions of Frankowska and Lorenz [FL22]. To control the variation of the dynamic, consider the seminorm on $\operatorname{Lip}_{\operatorname{conv}}(\Omega;\mathbb{R})$ given by

$$\left|\varphi\right|_{\infty} \coloneqq \sup_{(x,v)\in \mathrm{T}\Omega, \ |v|_{x}=1} \left|D_{x}\varphi(v)\right|,$$

where $D_x \varphi(v)$ denotes the directional derivative of φ . **Proposition.** Assume that F is Lipschitz with respect to $|\cdot|_{\infty}$. Any control $u(\cdot) \in L^1(0,T;U)$ generates a unique flow of (2), which is continuous with respect to the initial point.

THEOREM (Variational characterization). Assume F to be Lipschitz with respect to $|\cdot|_{\infty}$. An absolutely continuous curve $(y_s)_{s \in [0,T]}$ is a solution of (2) if and only if for almost any $s \in [0, T]$, it satisfies the *Evolutionary Variational Inequality*

$$\frac{d}{ds}\frac{d^2(y_s,z)}{2} \leq F(y_s,u(s))(z) - F(y_s,u(s))(y_s) \qquad \forall z \in \Omega.$$

THE FORMULATION through a potential dynamic allows to embed $(\text{Lip}_{conv}(\Omega;\mathbb{R}),|\cdot|_{\infty})$ in a Banach space, and **L** take convex hulls therein. Denote $\mathcal{P}(U)$ the set of Borel probability measures on U.

Definition (Relaxed dynamic). Let $F : \Omega \times U \to Lip_{conv}(\Omega; \mathbb{R})$ be a potential dynamic with compact images. Its

A first potential F_1 , and the metric gradient f_1 of $-F_1$.

A second potential F_2 , and the metric gradient f_2 of $-F_2$.

The potential $\frac{1}{2}F_1 + \frac{1}{2}F_2$ and the metric gradient of its opposite.

Observe that the latter is the geodesic mean of f_1 and f_2 .

relaxed counterpart is given by

$$\overline{co}F:\Omega\times\mathscr{P}(U)\to Lip_{conv}(\Omega;\mathbb{R}),\qquad \overline{co}F(x,\omega)\coloneqq\int_{u\in U}F(x,u)d\omega(u).$$

One shows that the ODE (2) with second member $\overline{co}F$ still admits a well-defined flow for any relaxed control $\omega(\cdot) \in L^1(0,T;\mathscr{P}(U))$, where $\mathscr{P}(U)$ is endowed with a Wasserstein distance.

THEOREM (Closure of the set of trajectories). Assume F to be Lipschitz with respect to $|\cdot|_{\infty}$. For any $x \in \Omega$, the closure of the set

$$\{(y_s)_{s \in [0,T]} \mid y_0 = x, \quad \dot{y}_s = \nabla_{y_s}(-F(y_s, u(s))) \text{ for some } u(\cdot) \in L^1(0, T; U) \}$$

in AC($[0, T]; \Omega$) is given by

 $\left\{ (y_s)_{s \in [0,T]} \mid y_0 = x, \quad \dot{y}_s = \nabla_{y_s} (-\overline{\operatorname{co}} F(y_s, \omega(s))) \text{ for some } \omega(\cdot) \in L^1(0,T;\mathscr{P}(U)) \right\}.$

In particular, if F has convex images, it generates compact sets of trajectories. One could wonder if the convexification procedure on energies has any meaning at the level of vector fields. In \mathbb{R}^d , one may restrict the image of F in the set of linear potentials $y \mapsto \langle y, v \rangle$ for some $v \in \mathbb{R}^d$, so that

$$\overline{\operatorname{co}}F(x,\omega) = \int_{u \in U} \langle \cdot, v_{x,u} \rangle \, d\omega(u) = \langle \cdot, v_{x,\omega} \rangle, \quad \text{where} \quad v_{x,\omega} \coloneqq \int_{u \in U} v_{x,u} \, d\omega(u).$$

Unfortunately, in a general CAT(0) space, there is no such linear functional, although a *metric scalar product* $\langle p, v \rangle_x := \frac{1}{2} (|p|_x^2 + |v|_x^2 - d_x^2(p, v))$ is defined in each tangent cone $(T_x \Omega, d_x)$. However: **Proposition.** If ω is concentrated on Gâteaux-differentiable functions, which satisfy

$D_x \varphi(v) = \langle \nabla_x \varphi, v \rangle_x \qquad \forall v \in \mathbf{T}_x \Omega,$

then the gradient of the convex combination is the barycentre of the gradients in the sense of Sturm [Stu03], i.e.

$$\nabla_{x}\left(\int_{u\in U}\varphi_{u}d\omega(u)\right)=Bary_{T_{x}\Omega}\nabla_{x}\varphi_{\pi_{u}}\#\omega.$$

This equality legitimates the use of a convex hull in the Banach space of potentials. The restriction to Gâteauxdifferentiable maps is not stringent, since such functions may be built from the squared distance.

CONCLUSION

SUMME that the potential dynamic F is Lipschitz with convex images. Then the Mayer control problem admits solutions. If F is not convex-valued, then the problem (1) can be *relaxed* by substituting the convexified dynamic $\overline{co}F$ to F, without changing the optimal value. As in \mathbb{R}^d , optimal controls exist in the form of *Young measures* over U.

[AKP22] Stephanie Alexander, Vitali Kapovitch, and Anton Petrunin. Alexandrov geometry: Foundations, October 2022. Preprint (arXiv:1903.08539).

Hélène Frankowska and Thomas Lorenz. Filippov's Theorem for Mutational Inclusions in a Metric Space, May 2022. [FL22]

[Stu03] Karl-Theodor Sturm. Probability measures on metric spaces of nonpositive curvature. In Contemporary Mathematics, volume 338, pages 357–390. American Mathematical Society, 2003.

Italian-Japanese workshop on variational perspectives for PDEs, September 9-13 2024, Pavia.