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CONTROL PROBLEMS are optimization problems set on the trajectories of a dynamical system. Among them, a Mayer problem writes as

Minimize J
(
y0,x,u

T

)
over all controls u(·) ∈ L1(0,T;U), (1)

where J is a given terminal cost, U a compact set of controls, and the trajectory
(
yt,x,u

s
)

s∈[t,T] is the solution of the controlled dynamical system
ẏs = f (ys,u(s)) issued from x at time t.
Our aim is to study such problems in the so-called CAT(0) spaces, i.e. metric geodesic spaces with a 2-convex squared distance. This poster
focuses on the existence of an optimal control, which is usually obtained from compactness of the set of trajectories issued from a given point.
In Rd, this set is closed if f (·,U) is convex for each x ∈Ω. What would be a proper generalisation of this assumption in a CAT(0) space Ω?

MOTIVATION

FORMULATION

THE FIRST class of ODEs to
be defined in metric spaces

is the family of gradient flows.
In a CAT(0) space Ω, Alexander,
Kapovitch and Petrunin [AKP22]
were able to show that any
Lipschitz and semiconcave function
F : Ω → R generates a semigroup
(h, x) 7→ GFF(h, x) whose right
derivative at all time coincides with
the metric gradient of F.

To define a general ODE, consider a “potential
dynamic” F :Ω×U →Lipconv(Ω;R) valued in convex
and Lipschitz functions. The ODE formally writes
as

ẏs =∇ys (−F(ys,u(s))) . (2)

Definition. A curve (ys)s∈[0,T] is a solution of (2) if
it is absolutely continuous, and for almost any s ∈
[0,T], there holds

lim
h↘0

d
(
ys+h,GF−F(ys,u(s))(h, ys)

)
h

= 0.

This formulation is inspired from the theory of mutational
equations, and uses the results of existence, uniqueness
and estimates for the solutions of Frankowska and
Lorenz [FL22]. To control the variation of the dynamic,
consider the seminorm on Lipconv(Ω;R) given by∣∣ϕ∣∣

∞ := sup
(x,v)∈TΩ, |v|x=1

∣∣Dxϕ(v)
∣∣ ,

where Dxϕ(v) denotes the directional derivative of ϕ.

Proposition. Assume that F is Lipschitz with respect to |·|∞.
Any control u(·) ∈ L1(0,T;U) generates a unique flow of (2),
which is continuous with respect to the initial point.

THEOREM (Variational characterization). Assume F to be Lipschitz with respect to |·|∞. An absolutely continuous curve (ys)s∈[0,T] is a solution of (2) if and only if for almost
any s ∈ [0,T], it satisfies the Evolutionary Variational Inequality

d
ds

d2 (ys, z)
2

É F(ys,u(s))(z)−F(ys,u(s))(ys) ∀z ∈Ω.

A first potential F1, and the metric gradient f1 of −F1.

A second potential F2, and the metric gradient f2 of −F2.

The potential 1
2F1+ 1

2F2 and the metric gradient of its opposite.
Observe that the latter is the geodesic mean of f1 and f2.

RELAXATION

THE FORMULATION through a potential dynamic allows to embed
(
Lipconv(Ω;R), |·|∞

)
in a Banach space, and

take convex hulls therein. Denote P(U) the set of Borel probability measures on U .

Definition (Relaxed dynamic). Let F :Ω×U → Lipconv(Ω;R) be a potential dynamic with compact images. Its
relaxed counterpart is given by

coF :Ω×P(U)→Lipconv(Ω;R), coF(x,ω) :=
∫

u∈U
F(x,u)dω(u).

One shows that the ODE (2) with second member coF still admits a well-defined flow for any relaxed control
ω(·) ∈ L1(0,T;P(U)), where P(U) is endowed with a Wasserstein distance.

THEOREM (Closure of the set of trajectories). Assume F to be Lipschitz with respect to |·|∞. For any
x ∈Ω, the closure of the set{

(ys)s∈[0,T]
∣∣ y0 = x, ẏs =∇ys(−F(ys,u(s))) for some u(·) ∈ L1(0,T;U)

}
in AC([0,T];Ω) is given by{

(ys)s∈[0,T]
∣∣ y0 = x, ẏs =∇ys(−coF(ys,ω(s))) for some ω(·) ∈ L1(0,T;P(U))

}
.

In particular, if F has convex images, it generates compact sets of trajectories. One could wonder if the
convexification procedure on energies has any meaning at the level of vector fields. In Rd, one may restrict
the image of F in the set of linear potentials y 7→ 〈y,v〉 for some v ∈Rd, so that

coF(x,ω)=
∫

u∈U
〈·,vx,u〉dω(u)= 〈·,vx,ω〉 , where vx,ω :=

∫
u∈U

vx,udω(u).

Unfortunately, in a general CAT(0) space, there is no such linear functional, although a metric scalar product
〈p,v〉x := 1

2

(|p|2x+|v|2x−d2
x(p,v)

)
is defined in each tangent cone (TxΩ,dx). However:

Proposition. If ω is concentrated on Gâteaux-differentiable functions, which satisfy

Dxϕ(v)= 〈∇xϕ,v〉x ∀v ∈TxΩ,

then the gradient of the convex combination is the barycentre of the gradients in the sense of Sturm [Stu03], i.e.

∇x

(∫
u∈U

ϕudω(u)
)
=BaryTxΩ

∇xϕπu#ω.

This equality legitimates the use of a convex hull in the Banach space of potentials. The restriction to Gâteaux-
differentiable maps is not stringent, since such functions may be built from the squared distance.

ASUMME that the potential dynamic F is Lipschitz with convex images. Then the Mayer control problem admits solutions. If F is not convex-valued, then the problem (1) can
be relaxed by substituting the convexified dynamic coF to F, without changing the optimal value. As in Rd, optimal controls exist in the form of Young measures over U .

CONCLUSION
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