A relaxation theorem in CAT(0) spaces

amr^o

Averil Prost, Hasnaa Zidani

C Δ NTROL PROBLEMS are optimization problems set on the trajectories of a dynamical system. Among them, a Mayer problem writes as $\mathbf M$ inimize $\mathfrak J$ $\left(\right)$ $y_{\bm T}^{0,x,u}$ *T* $\big)$ over all controls $u(\cdot) \in L^1(0,T;U)$, (1)

where $\mathfrak J$ is a given terminal cost, U a compact set of controls, and the trajectory $\left(y_{s}^{t,x,u}\right)$ $\left(\begin{matrix} t, x, u \ s \end{matrix} \right)$ *s*∈[*t*,*T*] is the solution of the controlled dynamical system $\dot{y}_s = f(y_s, u(s))$ issued from *x* at time *t*.

LMI, INSA Rouen Normandie. Please contact us at **averil.prost@insa-rouen.fr**.

THE FIRST class of ODEs to

The defined in metric spaces be defined in metric spaces is the family of gradient flows. In a CAT(0) space Ω , Alexander, Kapovitch and Petrunin [\[AKP22\]](#page-0-0) were able to show that any Lipschitz and semiconcave function $F: \Omega \to \mathbb{R}$ generates a semigroup $(h, x) \rightarrow GF_F(h, x)$ whose right derivative at all time coincides with the metric gradient of *F*.

Our aim is to study such problems in the so-called *CAT(0) spaces*, i.e. metric geodesic spaces with a 2-convex squared distance. This poster focuses on the *existence* of an optimal control, which is usually obtained from compactness of the set of trajectories issued from a given point. In R *d* , this set is closed if *f* (·,*U*) is convex for each *x* ∈ Ω. What would be a proper generalisation of this assumption in a CAT(0) space Ω?

> **Definition.** *A curve* $(y_s)_{s \in [0,T]}$ *is a solution of [\(2\)](#page-0-1) if it is absolutely continuous, and for almost any s* ∈ [0,*T*]*, there holds*

lim $\overline{h\diagdown 0}$ $d\left(y_{s+h},\mathrm{GF}_{-F(y_s,u(s))}(h,y_s)\right)$ *h* $= 0.$

This formulation is inspired from the theory of *mutational equations*, and uses the results of existence, uniqueness and estimates for the solutions of Frankowska and Lorenz [\[FL22\]](#page-0-2). To control the variation of the dynamic, consider the seminorm on ${\rm Lip}_{\rm conv}(\Omega;\mathbb{R})$ given by

MOTIVATION

FORMULATION

Proposition. Assume that F is Lipschitz with respect to $|\cdot|_{\infty}$. *Any control* $u(\cdot) \in L^1(0,T;U)$ *generates a unique flow of [\(2\)](#page-0-1), which is continuous with respect to the initial point.*

THEOREM (Variational characterization). Assume F to be Lipschitz with respect to $\lvert\cdot\rvert_\infty$. An absolutely continuous curve $(y_s)_{s\in[0,T]}$ is a solution of [\(2\)](#page-0-1) if and only if for almost any $s \in [0, T]$, it satisfies the *Evolutionary Variational Inequality*

To define a general ODE, consider a "potential $\operatorname{dynamic}^{n}F:\Omega\times U\rightarrow \operatorname{Lip}_{\text{conv}}(\Omega;\mathbb{R})$ valued in convex and Lipschitz functions. The ODE formally writes as

 $\dot{y}_s = \nabla_{y_s}(-F(y_s, u(s))).$ (2)

One shows that the ODE [\(2\)](#page-0-1) with second member co*F* still admits a well-defined flow for any *relaxed control* $\omega(\cdot) \in L^1(0,T;\mathscr{P}(U)) ,$ where $\mathscr{P}(U)$ is endowed with a Wasserstein distance.

THEOREM (Closure of the set of trajectories). Assume *F* to be Lipschitz with respect to $\lvert \cdot \rvert_{\infty}$. For any $x \in \Omega$, the closure of the set

 $\{(y_s)_{s \in [0,T]} | y_0 = x, \quad \dot{y}_s = \nabla_{y_s}(-F(y_s, u(s))) \text{ for some } u(\cdot) \in L^1(0,T;U) \}$

in $AC([0, T]; \Omega)$ is given by

 $\{(y_s)_{s\in[0,T]} | y_0 = x, \quad \dot{y}_s = \nabla_{y_s}(-\overline{\text{co}}F(y_s,\omega(s))) \text{ for some } \omega(\cdot) \in L^1(0,T;\mathcal{P}(U)) \}.$

In particular, if *F* has convex images, it generates compact sets of trajectories. One could wonder if the convexification procedure on energies has any meaning at the level of vector fields. In $\mathbb{R}^d,$ one may restrict the image of F in the set of linear potentials $y \mapsto \langle y, v \rangle$ for some $v \in \mathbb{R}^d,$ so that

$$
\big|\varphi\big|_\infty\coloneqq\sup_{(x,v)\in\mathrm{T}\Omega,\ |v|_x=1}\big|D_x\varphi(v)\big|\,,
$$

where $D_x\varphi(v)$ denotes the directional derivative of φ .

$$
\frac{d}{ds}\frac{d^2(y_s,z)}{2} \leq F(y_s,u(s))(z) - F(y_s,u(s))(y_s) \qquad \forall z \in \Omega.
$$

THE FORMULATION through a potential dynamic allows to embed $(Lip_{conv}(\Omega;\mathbb{R}),|\cdot|_{\infty})$ in a Banach space, and take convex hulls therein. Denote $\mathcal{P}(U)$ the set of Borel probability measures on U . \blacktriangle take convex hulls therein. Denote $\mathcal{P}(U)$ the set of Borel probability measures on *U*.

RELAXATION

Definition (Relaxed dynamic)**.** *Let F* : Ω ×*U* → *Lipconv* (Ω;R) *be a potential dynamic with compact images. Its*

A first potential F_1 , and the metric gradient f_1 of $-F_1$.

A second potential F_2 , and the metric gradient f_2 of $-F_2$.

relaxed counterpart is given by

$$
\overline{co}F:\Omega\times\mathscr{P}(U)\to Lip_{conv}(\Omega;\mathbb{R}),\qquad \overline{co}F(x,\omega):=\int_{u\in U}F(x,u)d\omega(u).
$$

$$
\overline{\text{co}}F(x,\omega)=\int_{u\in U}\langle\cdot,v_{x,u}\rangle\,d\omega(u)=\langle\cdot,v_{x,\omega}\rangle\,,\qquad\text{where}\qquad v_{x,\omega}\coloneqq\int_{u\in U}v_{x,u}d\omega(u).
$$

Unfortunately, in a general CAT(0) space, there is no such linear functional, although a *metric scalar product* $\left\langle p,v\right\rangle _{x}\coloneqq\frac{1}{2}$ 2 $(|p|_x^2 + |v|_x^2 - d_x^2)$ $_{x}^{2}(p, v)$) is defined in each tangent cone (T $_{x}$ Ω, d_{x}). However: **Proposition.** *If ω is concentrated on* Gâteaux-differentiable *functions, which satisfy*

$D_x \varphi(v) = \langle \nabla_x \varphi, v \rangle_x$ $\forall v \in \mathcal{T}_x \Omega,$

then the gradient of the convex combination is the barycentre of the gradients in the sense of Sturm [\[Stu03\]](#page-0-3), i.e.

$$
\nabla_x \left(\int_{u \in U} \varphi_u d\omega(u) \right) = Bary_{T_x\Omega} \nabla_x \varphi_{\pi_u} \# \omega.
$$

The potential $\frac{1}{2}$ $\frac{1}{2}F_1 + \frac{1}{2}$ $\frac{1}{2}F_2$ and the metric gradient of its opposite. Observe that the latter is the geodesic mean of f_1 and f_2 .

This equality legitimates the use of a convex hull in the Banach space of potentials. The restriction to Gâteauxdifferentiable maps is not stringent, since such functions may be built from the squared distance.

CONCLUSION

 \bigwedge SUMME that the potential dynamic F is Lipschitz with convex images. Then the Mayer control problem admits solutions. If F is not convex-valued, then the problem [\(1\)](#page-0-4) can
A be *relaxed* by substituting the convex be *relaxed* by substituting the convexified dynamic $\overline{{\bf c}}$ to F , without changing the optimal value. As in \mathbb{R}^d , optimal controls exist in the form of *Young measures* over $U.$

[AKP22] Stephanie Alexander, Vitali Kapovitch, and Anton Petrunin. Alexandrov geometry: Foundations, October 2022. Preprint (arXiv:1903.08539).

[FL22] Hélène Frankowska and Thomas Lorenz. Filippov's Theorem for Mutational Inclusions in a Metric Space, May 2022.

[Stu03] Karl-Theodor Sturm. Probability measures on metric spaces of nonpositive curvature. In *Contemporary Mathematics*, volume 338, pages 357–390. American Mathematical Society, 2003.

Italian-Japanese workshop on variational perspectives for PDEs, September 9-13 2024, Pavia.