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PICTURE YOURSELF an incompressible fluid enclosed in a bounded domain. Assume we may “push”
some part of the fluid. Being incompressible, this fluid particle will transmit its motion to its immediate

neighbours, which will propagate their own motion as well, and so on inductively. As the domain is bounded,
the fluid has no choice but to eventually come back to fill the volume left empty by the initial impulse.
Our action essentially created interlaced swirls of varying shapes, so that the displacements mutually
compensate. If we were able to follow the trajectory of a single droplet, we would see it coil and curl as to
form a closed loop, and resemble the solenoids that one encounters in electromagnetics.
Let us switch now from a Lagrangian to an Eulerian point of view, and attach to each point of our domain the
velocity of the nearby fluid. We obtain what is conveniently named a solenoidal vector field. These fields
form a vector space, whose closure in the Hilbert space L2 is the natural setting for the incompressible
Navier-Stokes equation. It turns out that the orthogonal complement of this space is no less interesting,
and recently attracted a lot of attention in the community of optimal transport. A solenoidal field and some of its flow lines.

LEt P2(Rd) be the set of Borel probability measures µ on Rd such that
∫

x |x|2 dµ is finite. If f were to belong to L2
µ(Rd;TRd), the transport of µ by

f would be defined as the measure f #µ := µ◦ f −1. By the pushforward operation #, the mass of µ located at x is sent to the point x+ f (x). One
could want to generalize this by allowing to split the mass in various directions v, each with a probability ξx(v). This gives rise to “measure fields”
ξ ∈P2(TRd)µ, which are probability measures on the tangent space TRd := {

(x,v)
∣∣ x ∈Rd, v ∈TxRd}

representable by
∫

xξx(·)dµ for some measurable
family (ξx)x. Thereon µ gets transported by ξ to the measure (πx+πv)#ξ, which associates to each Borel set A ⊂Rd the quantity

∫
(x,v)∈TRd 1IA(x+v)dξ.

WASSERSTEIN DISTANCE

The distance between µ,ν ∈P2(Rd) reads as

d2
W(µ,ν) := inf

∫
(x,v)∈TRd

|v|2 dξ(x,v),

where the infimum is taken over the measure
fields ξ ∈P2(TRd)µ such that (πx+πv)#ξ= ν.

CONE DISTANCE

The distance between ξ,ζ ∈P2(TRd)µ is

W2
µ(ξ,ζ) :=

∫
x∈Rd

d2
W ,TxRd (ξx,ζx)dµ(x).

The distance Wµ(ξ,0µ) to the null velocity, that
puts mass only on pairs (x,0), is denoted ∥ξ∥µ.

METRIC SCALAR PRODUCT

To each measure µ ∈ P2(Rd) is attached a
metric scalar product, given by

〈ξ,ζ〉µ := 1
2

[
∥ξ∥2

µ+∥ζ∥2
µ−W2

µ(ξ,ζ)
]

for any two measure fields ξ,ζ ∈P2(TRd)µ.

The infimum defining dW is reached over a set of measure fields that behave like gradients of semiconvex functions. On this account, we refer the
reader to the enthousiastic presentation [San15]. As a matter of fact, the collection of these infima contains and extends the orthogonal of solenoidal
fields in L2

µ(Rd;TRd). In turn, solenoidal fields may be generalized through orthogonality with respect to 〈·, ·〉µ. Let us present both as a diptych.

TANGENT MEASURE FIELDS

For any α> 0, denote by α ·ξ the rescaled measure field ξ(·/α). Let

TanµP2(Rd) :=
{
α ·ξ s.t. α> 0 and

∫
(x,v)
|v|2dξ= d2

W(µ, (πx+πv)#ξ)
}Wµ

.

This set, known as the geometric tangent space [Gig08], is
characterized by the ability to escape from µ at maximal speed, in that

ξ ∈TanµP2(Rd) ⇐⇒ lim
h↘0

dW (µ, (πx+πv)#(h ·ξ))
h

= ∥ξ∥µ.

SOLENOIDAL MEASURE FIELDS

A measure field ζ ∈P2(TRd)µ is said to be solenoidal if

〈ξ,ζ〉µ= 0 ∀ξ ∈TanµP2(Rd).

We denote by SolµP2(Rd) the collection of such fields. It turns out that
they are the fields spiraling around their initial point, in the sense that

ζ ∈SolµP2(Rd) ⇐⇒ lim
h↘0

dW (µ, (πx+πv)#(h ·ζ))
h

= 0.

A measure field and its projections.

Both sets TanµP2(Rd) and SolµP2(Rd) enjoy projectors π
µ
T and π

µ
S, that to any measure field ξ ∈ P2(TRd)µ,

associate the unique argument of the minimum of Wµ(ξ, ·) among their respective members. Figure 2 illustrates
the projections when µ is concentrated on the unit circle S1. As a side remark, the set SolµP2(Rd) is upper
semicontinuous in the set-valued sense with respect to µ in the Wasserstein topology of P2(TRd), while the
geometric tangent space is lower semicontinuous. In other words, solenoidal measure fields are more stable
with respect to the base measure than their tangent cousins.

WE CONSIDER our main result the fact that any ξ ∈ P2(TRd)µ decomposes in an unique way into its
projection π

µ
Tξ over the tangent space and its projection π

µ
Sξ over the solenoidal space. If ξ were to be

equal to f #µ for some f ∈ L2
µ(Rd;TRd), then the decomposition would take the form f = g+h, in which g is a

solenoidal field and h belongs to the closure in L2
µ of the gradients of smooth functions. When µ is the Lebesgue

measure, this result is known as the Helmholtz-Hodge theorem [Lad87, Chap.1, Section 2]. In the general case,
one shows that ξ is also given by a “sum” through the choice of a particular coupling between π

µ
Tξ and π

µ
Sξ.

Some of the Hilbertian identities carry over in P2(TRd)µ, and some does not. Under the notations of the previous paragraph, there always holds

∥ξ∥2
µ= ∥πµ

Tξ∥2
µ+∥πµ

Sξ∥2
µ, 〈ξ,η〉µ= 〈πµ

Tξ,η〉µ ∀η ∈TanµP2(Rd), and 〈ξ,ζ〉µ= 〈πµ
Sξ,ζ〉

µ
∀ζ ∈SolµP2(Rd).

However, the Pythagoras formula W2
µ(ξ,ζ)=W2

µ(πµ
Tξ,πµ

Tζ)+W2
µ(πµ

Sξ,πµ
Sζ) does not hold in general. Even further, distinct measure fields may share the

same projections over TanµP2(Rd) and SolµP2(Rd). Such details spice up the rich − and still mysterious − geometry of the Wasserstein space.
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