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Motivation — Control problems on measures

We settle ourselves in the space of probability measures P»(R?), endowed with the Monge-Kantorovitch
distance dyy with p = 2. In P,(IRY), absolutely continuous curves are characterized as the solutions of
the continuity equation [AGS05]. We consider time-dependant measurable controls u(-) valued in a
compact U C R". Finding the trajectory minimizing some cost J leads to study
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Such models find burgeoning applications in physics, biology, 1mage processing or crowd simulation.
CHARACTERISTICS IN WASSERSTEIN VISCOSITY FOR CONTROL PROBLEMS

The controlled continuity equation (CE) 1s defined in distribution sense, In Euclidian spaces, differential equations arising in control problems
and well-posed for our Lip. and bounded f : R? x Py(RY) x U s TRY. are understood using either test functions or semidifterentials.
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Differential tools — Derivation along the geodesics

In the Euclidian space, one follows a geodesic by moving along a given vector. An analogy stands over measures, provided one accepts that tangent directions
at 1+ will be represented as a special subset P(TR?) 1.0 Of the probabilities over the underlying tangent space, in bijection with the optimal transport plans. The
completion of such a set gives a tangent cone (see Def 1). The exponential map ¢ — exp u(t &) = (7, +tm,)#£ then replaces linear displacements in directional
derivatives (see Def 2). Instead of a gradient, it is the map £ — D, g(u)(&) of directional derivatives that will be used to define the Hamiltonian. Any locally
Lipschitz and DC (difference of semiconvex) function admits such a differential, and fortunately, the squared Wasserstein distance happens to be so!

DEF | — TANGENT CONE [GIGOS] DEF 2 — DERIVATIVE ALONG GEODESICS DEF 3 — METRIC COTANGENT BUNDLE

Let C, be the set of 11/, —Lipschitz and positively
homogeneous maps from 7, P,(/) to R. The
metric cotangent bundle 1s

Denote P,(1T'E), 3 € ~, Eif 1V,(£,€) =0, with | Given g: Py(R?) = Rand { € Po(T'E),,, let

_ —dwlexp,(t-€),exp,(t - ) _ iy Jlepu(t- &) — g(p)
W.(,8) = %{%W% Dyg(u)(§) = lim ————=——,

T(PARY)) = | ) {u}xC.  (MCB)
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It g 1s Lipschitz and DC, the limit exists, and
. D,g(u) extends to a Lipschitz and positively
T, Po(E) =Po(TE),0f ~yu homogeneous function over (7, P( L), IV,).

The tangent cone to Py(RY) at 1 is defined as

1" 1s used as a metric analogue of the dual space.

Characterization of the solution — Hamilton-Jacobi
Let the Hamiltonian H : T — R be given by H (u, p) == sup,.y —p (7" o f(-, i, u)#u), where T comes from Def 3, and

Ty = {(t,,u) — w(t) iZiEN5id)2/v(,lL, Uz’) Qﬁ - Cl([O,T]), 52 2 O, (52)@ - ll, g; € PQ(]RCZ), and diam {Ol} < OO} :

By construction, the differential D, (¢, 1) exists and belongs to C, for all ¢ € T. (see Def 3). We consider the equation

-0V (t,pu) + H(u, D,V (t, 1) =0, V(T, 1) =3J(p). (HJ)

Def 4 A function u : [0, T] x Po(R?) +— R is a sub/supersolution of (HJ) if it is usc/lsc, and if for any test function o € T
such that u — ¢ attains a max/minimum in (t, 1) € [0, T[xPa(RY), there holds +[—0yp(t, 1) + H(p, Dyp(t, 1)) < 0. It is
a solution of (HJ) if it is both a sub and supersolution, and satisfies the terminal condition.

Def 4 allows for a weak comparison principle, relying on arguments inspired from the semidifferential notion of [JMQ22].

THEOREM — COMPARISON PRINCIPLE Assume f is Lipschitz and bounded, and let v,w be Lipschitz and
bounded sub/supersolution of (HJ). Then sup; i 11xp,ma(V(E, i) — w(t, (1)) < SUP e rmyxpyme)(V(E, 1) — w(E, ).

SOLUTION OF (HJ) — [JPZ23]

Assume that the dynamic f and the terminal cost J are Lipschitz-continuous and bounded, and that the function set { (-, i, u) | u € U} C C(R? TRY) is
convex for all u € PQ(RCZ). Then the value function V', defined in (1), 1s the unique Lipschitz and bounded solution of (HJ) 1n the sense of Def 4.
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