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Motivation − Control problems on measures
We settle ourselves in the space of probability measures P2(Rd), endowed with the Monge-Kantorovitch
distance dW with p = 2. In P2(Rd), absolutely continuous curves are characterized as the solutions of
the continuity equation [AGS05]. We consider time-dependant measurable controls u(·) valued in a
compact U ⊂ Rκ. Finding the trajectory minimizing some cost J leads to study

V (t, ν) := inf
{
J
(
µt,ν,uT

) ∣∣ (µt,ν,us )s∈[t,T ] is a solution of (CE) with µt = ν and control u(·)
}
. (1)

Such models find burgeoning applications in physics, biology, image processing or crowd simulation.

CHARACTERISTICS IN WASSERSTEIN

The controlled continuity equation (CE) is defined in distribution sense,
and well-posed for our Lip. and bounded f : Rd × P2(Rd)× U 7→ TRd.

∂sµs + div (f (·, µs, u(s))µs) = 0 (CE)

VISCOSITY FOR CONTROL PROBLEMS

In Euclidian spaces, differential equations arising in control problems
are understood using either test functions or semidifferentials.

Differential tools − Derivation along the geodesics
In the Euclidian space, one follows a geodesic by moving along a given vector. An analogy stands over measures, provided one accepts that tangent directions
at µ will be represented as a special subset P(TRd)µ,o of the probabilities over the underlying tangent space, in bijection with the optimal transport plans. The
completion of such a set gives a tangent cone (see Def 1). The exponential map t 7→ expµ(t · ξ) := (πx+ tπv)#ξ then replaces linear displacements in directional
derivatives (see Def 2). Instead of a gradient, it is the map ξ 7→ Dµg(µ)(ξ) of directional derivatives that will be used to define the Hamiltonian. Any locally
Lipschitz and DC (difference of semiconvex) function admits such a differential, and fortunately, the squared Wasserstein distance happens to be so!

DEF 1 − TANGENT CONE [GIG08]

Denote P2(TE)µ ∋ ξ ∼µ ξ if Wµ(ξ, ξ) = 0, with

Wµ(ξ, ξ) := lim
t↘0

dW(expµ(t · ξ), expµ(t · ξ))
t

.

The tangent cone to P2(Rd) at µ is defined as

TµP2(E) := P2(TE)µ,o/ ∼µ
Wµ
.

DEF 2 − DERIVATIVE ALONG GEODESICS

Given g : P2(Rd) 7→ R and ξ ∈ P2(TE)µ,o, let

Dµg(µ)(ξ) := lim
t↘0

g(expµ(t · ξ))− g(µ)

t
.

If g is Lipschitz and DC, the limit exists, and
Dµg(µ) extends to a Lipschitz and positively
homogeneous function over (TµP2(E),Wµ).

DEF 3 − METRIC COTANGENT BUNDLE

Let Cµ be the set of Wµ−Lipschitz and positively
homogeneous maps from TµP2(E) to R. The
metric cotangent bundle is

T(P2(Rd)) :=
⋃

µ∈P2(Rd)

{µ} × Cµ. (MCB)

T is used as a metric analogue of the dual space.

Characterization of the solution − Hamilton-Jacobi
Let the Hamiltonian H : T 7→ R be given by H(µ, p) := supu∈U −p (πµ ◦ f (·, µ, u)#µ), where T comes from Def 3, and

T+– :=
{
(t, µ) 7→ ψ(t)+–

∑
i∈N
δid

2
W(µ, σi)

∣∣∣ ψ ∈ C1([0, T ]), δi ⩾ 0, (δi)i ∈ l1, σi ∈ P2(Rd), and diam {σi} <∞
}
.

By construction, the differential Dµφ(t, µ) exists and belongs to Cµ for all φ ∈ T+– (see Def 3). We consider the equation

−∂tV (t, µ) +H(µ,DµV (t, µ)) = 0, V (T, µ) = J(µ). (HJ)

Def 4 A function u : [0, T ]×P2(Rd) 7→ R is a sub/supersolution of (HJ) if it is usc/lsc, and if for any test function φ ∈ T+–

such that u− φ attains a max/minimum in (t, µ) ∈ [0, T [×P2(Rd), there holds +– [−∂tφ(t, µ) +H(µ,Dµφ(t, µ))] ⩽ 0. It is
a solution of (HJ) if it is both a sub and supersolution, and satisfies the terminal condition.

Def 4 allows for a weak comparison principle, relying on arguments inspired from the semidifferential notion of [JMQ22].

THEOREM − COMPARISON PRINCIPLE Assume f is Lipschitz and bounded, and let v, w be Lipschitz and
bounded sub/supersolution of (HJ). Then sup(t,µ)∈[0,T ]×P2(Rd)(v(t, µ)− w(t, µ)) ⩽ sup(t,µ)∈{T}×P2(Rd)(v(t, µ)− w(t, µ)).

SOLUTION OF (HJ) − [JPZ23]

Assume that the dynamic f and the terminal cost J are Lipschitz-continuous and bounded, and that the function set {f (·, µ, u) | u ∈ U} ⊂ C(Rd, TRd) is
convex for all µ ∈ P2(Rd). Then the value function V , defined in (1), is the unique Lipschitz and bounded solution of (HJ) in the sense of Def 4.
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